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The Baltic Way is a competition in mathematics for students in
the secondary school. It was held for the first time in 1990 with
participants from Estonia, Latvia and Lithuania. It is named after
a mass demonstration in August 1989, when about two million
inhabitants of these countries stood holding hands along the road
from Tallinn to Vilnius on the 50th anniversary of the Molotov-
Ribbentrop Pact. After the political changes which were soon to
follow, it became possible to invite teams from other countries,
making the competition a truly international event. Since 1990,
it has taken place each year, hosted by different countries, and
since 1997, teams from all countries around the Baltic Sea plus the
Nordic countries Norway and Iceland have participated. Iceland,
which was the first country to recognise the independence of the
Baltic states, was actually one of the first other than the three
Baltic ones to be invited to send a team. Occasionally, teams
from countries outside the aforementioned permanent group have
participated as guests.

Each team consists of five students, who are requested to
collaborate on the solution of a set of twenty problems to be
answered within four and a half hours. Just one solution of each
problem is accepted from each team. Thus it is a part of the
challenge given to the teams that they must collaborate to utilise
optimally the individual skills of their members.

This booklet contains the problems of the Baltic Way com-
petitions 2002-2006 with suggested solutions and tables of the
scores of the teams. A printed copy is given to participants in the
Baltic Way 2007 in Copenhagen, and a PDF version is available at
www.balticway07.dk/earlierbw.php. It is based on collections of
the problems of each year with suggested solutions which were
produced by the respective organisers and published at their web
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iv Foreword

sites. I should like to thank the authors of this material for provid-
ing me with their original TgX-files.

Previously, Marcus Better compiled the problems from the
years 1990-1996, and Uve Nummert and Jan Willemson the prob-
lems from 1997-2001, with suggested solutions in printed booklets.
None of these booklets are available by now. The problems from
all the years are posted with suggested solutions at several web
sites. An almost complete collection is found at the web site of the
Baltic Way 2007 in Copenhagen, www.balticway(7.dk.

A great effort has been made to ensure that the provided solu-
tions are complete and accurate. However, should you encounter
an error or a typo, please write to me using the email address
below. Of course, other comments are also most welcome.

Hopefully, this collection of problems of varying difficulty will
be useful in education and training for national and international
competitions in mathematics. Everyone is free to use it for such
purposes. If the problems, or some of them, are published in print
or on the World Wide Web, a due citation in the form “Baltic Way
200x” is requested.

Arhus, October 2007

Rasmus Villemoes
burner@imf.au.dk
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Baltic Way 2002

Tartu, Estonia
October 31-November 4, 2002

02.1. (p.23) Solve the system of equations

a3 + 3ab® + 3ac* — 6abc = 1
b3 + 3ba? + 3bc® — 6abc = 1
3 + 3ca? + 3ch* — 6abc = 1

in real numbers.
02.2. (p.23) Let a, b, ¢, d be real numbers such that

a+b+c+d= -2,
ab+4ac+ad +bc+bd+cd =0.

Prove that at least one of the numbers 4, b, ¢, d is not greater than
—1.

02.3. (p.25 Find all sequences ap < a1 < ay < --- of real numbers
such that
A2 42 = 113” + ﬂ%
for all integers m,n > 0.
02.4. (p.27) Let n be a positive integer. Prove that

Y (- x)? < (1- 1)
i=1

for all nonnegative real numbers x1, xy, ..., x, such that x; + x; +
st “l’ xn = 1.
02.5. (p.28) Find all pairs (a,b) of positive rational numbers such

that
Va+vVbh=1/2+ 3.
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02.6. (.29 The following solitaire game is played on an m x n
rectangular board, m,n > 2, divided into unit squares. First, a
rook is placed on some square. At each move, the rook can be
moved an arbitrary number of squares horizontally or vertically,
with the extra condition that each move has to be made in the
90° clockwise direction compared to the previous one (e.g. after
a move to the left, the next one has to be done upwards, the next
one to the right etc.). For which values of m and # is it possible
that the rook visits every square of the board exactly once and
returns to the first square? (The rook is considered to visit only
those squares it stops on, and not the ones it steps over.)

02.7. (p.29) We draw n convex quadrilaterals in the plane. They
divide the plane into regions (one of the regions is infinite). Deter-
mine the maximal possible number of these regions.

02.8. (p.30) Let P be a set of n > 3 points in the plane, no three of
which are on a line. How many possibilities are there to choose a
set T of (”51) triangles, whose vertices are all in P, such that each
triangle in T has a side that is not a side of any other triangle in T?

02.9. .3 Two magicians show the following trick. The first
magician goes out of the room. The second magician takes a
deck of 100 cards labelled by numbers 1,2, ...,100 and asks three
spectators to choose in turn one card each. The second magician
sees what card each spectator has taken. Then he adds one more
card from the rest of the deck. Spectators shuffle these four cards,
call the first magician and give him these four cards. The first
magician looks at the four cards and “guesses” what card was
chosen by the first spectator, what card by the second and what
card by the third. Prove that the magicians can perform this trick.

02.10. (.35 Let N be a positive integer. Two persons play the
following game. The first player writes a list of positive integers
not greater than 25, not necessarily different, such that their sum is
at least 200. The second player wins if he can select some of these
numbers so that their sum S satisfies the condition 200 — N < § <
200 + N. What is the smallest value of N for which the second
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player has a winning strategy?

02.11. .35 Let n be a positive integer. Consider n points in the
plane such that no three of them are collinear and no two of the
distances between them are equal. One by one, we connect each
point to the two points nearest to it by line segments (if there are
already other line segments drawn to this point, we do not erase
these). Prove that there is no point from which line segments will
be drawn to more than 11 points.

02.12. (p.36) A set S of four distinct points is given in the plane. It
is known that for any point X € S the remaining points can be
denoted by Y, Z and W so that

XY = XZ + XW.

Prove that all the four points lie on a line.

02.13. .37 Let ABC be an acute triangle with Z/BAC > ZBCA,
and let D be a point on the side AC such that AB = BD. Fur-
thermore, let F be a point on the circumcircle of triangle ABC
such that the line FD is perpendicular to the side BC and points
F, B lie on different sides of the line AC. Prove that the line FB is
perpendicular to the side AC.

02.14. (p.38) Let L, M and N be points on sides AC, AB and BC of
triangle ABC, respectively, such that BL is the bisector of angle
ABC and segments AN, BL and CM have a common point. Prove
that if ZALB = ZMNB then ZLNM = 90°.

02.15. (p.39) A spider and a fly are sitting on a cube. The fly wants
to maximize the shortest path to the spider along the surface of
the cube. Is it necessarily best for the fly to be at the point opposite
to the spider? (“Opposite” means “symmetric with respect to the
centre of the cube”.)

02.16. (.39 Find all nonnegative integers m such that
am+1)
an = (22"1) 41

is divisible by at most two different primes.
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02.17. (p.40) Show that the sequence

2002\ (2003\ /(2004

2002/ \2002)"\2002)" """’
considered modulo 2002, is periodic.
02.18. (.41 Find all integers n > 1 such that any prime divisor of
n® —11is a divisor of (13 —1)(n?> —1).

02.19. (p.42) Let n be a positive integer. Prove that the equation
X+y+ % + % = 3n

does not have solutions in positive rational numbers.

02.20. (. 120 Does there exist an infinite non-constant arithmetic
progression, each term of which is of the form a’, where a and b
are positive integers with b > 2?



Baltic Way 2003
Riga, Latvia
October 31-November 4, 2003

03.1. (p.43) Let Q4 be the set of positive rational numbers. Find all
functions f: Q1 — Q4 which for all x € Q fulfil

1) f(3)=f(x)
2) (1+3)f(x) = f(x+1)

03.2. (p. 44) Prove that any real solution of
X +px+qg=0

satisfies the inequality 4qx < p>.
03.3. (p.44) Let x, y and z be positive real numbers such that xyz = 1.
Prove that

1+x)14+y)(1+2z) 22(1+{’/Z+ §/§+ {/f).

03.4. (p.45) Let a, b, ¢ be positive real numbers. Prove that

2a 2b 2c a b c

< — — .
a2+bc+b2+ca+c2+ab - bc+ca+ab

03.5. (p.46) A sequence (a,) is defined as follows: a; = V2,0 =2,
and a, 11 = anafl_l for n > 2. Prove that for every n > 1 we have

(I14+a1)(Q+a2)---(14a,) < (24 \fZ)alaz R .
03.6. (p.47) Let n > 2 and d > 1 be integers with d | n, and let
X1,X2,...,%; be real numbers such that x; +x, +---+x, = 0.
Prove that there are at least (Z:%) choices of d indices 1 < 71 < ip <

- < iz < nsuch that x; +x;, +---+x;, > 0.

7
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03.7. (.47 Let X be a subset of {1,2,3,...,10000} with the fol-
lowing property: If a, b € X, a # b, thena-b ¢ X. What is the
maximal number of elements in X?

03.8. (p.48) There are 2003 pieces of candy on a table. Two players
alternately make moves. A move consists of eating one candy or
half of the candies on the table (the “lesser half” if there is an odd
number of candies); at least one candy must be eaten at each move.
The loser is the one who eats the last candy. Which player — the
first or the second - has a winning strategy?

03.9. (p. 49 It is known that n is a positive integer, n < 144. Ten
questions of type “Is n smaller than a?” are allowed. Answers are
given with a delay: The answer to the i’th question is given only
after the (i + 1)’st question is asked, i = 1,2, ...,9. The answer to
the tenth question is given immediately after it is asked. Find a
strategy for identifying n.

03.10. (p.49) A lattice point in the plane is a point whose coordinates
are both integral. The centroid of four points (x;,y;), i =1,2,3,4,
is the point (XX f0txs NV tis) ] ety be the largest natural
number with the following property: There are n distinct lattice
points in the plane such that the centroid of any four of them is
not a lattice point. Prove that n = 12.

03.11. (p.50) Is it possible to select 1000 points in a plane so that at
least 6000 distances between two of them are equal?

03.12. (.51 Let ABCD be a square. Let M be an inner point on

side BC and N be an inner point on side CD with ZMAN = 45°.
Prove that the circumcentre of AMN lies on AC.

03.13. (p.51) Let ABCD be a rectangle and BC = 2 - AB. Let E be
the midpoint of BC and P an arbitrary inner point of AD. Let F
and G be the feet of perpendiculars drawn correspondingly from
A to BP and from D to CP. Prove that the points E, F, P, G are
concyclic.

03.14. (.52 Let ABC be an arbitrary triangle and AMB, BNC,
CKA regular triangles outward of ABC. Through the midpoint



Problems - 2003 9

of MN a perpendicular to AC is constructed; similarly through
the midpoints of NK resp. KM perpendiculars to AB resp. BC are
constructed. Prove that these three perpendiculars intersect at the
same point.

03.15. (p.53) Let P be the intersection point of the diagonals AC and
BD in a cyclic quadrilateral. A circle through P touches the side
CD in the midpoint M of this side and intersects the segments BD
and AC in the points Q and R, respectively. Let S be a point on
the segment BD such that BS = DQ. The parallel to AB through
S intersects AC at T. Prove that AT = RC.

03.16. .53 Find all pairs of positive integers (a,b) such thata — b
is a prime and ab is a perfect square.

03.17. (.54 All the positive divisors of a positive integer n are
stored into an array in increasing order. Mary has to write a
program which decides for an arbitrarily chosen divisor d > 1
whether it is a prime. Let n have k divisors not greater than d.
Mary claims that it suffices to check divisibility of d by the first
[k/2] divisors of n: If a divisor of d greater than 1 is found among
them, then d is composite, otherwise d is prime. Is Mary right?

03.18. (.55 Every integer is coloured with exactly one of the
colours BLUE, GREEN, RED, YELLOW. Can this be done in such a
way that if a,b,c,d are not all 0 and have the same colour, then
3a —2b # 2¢ — 3d?

03.19. .56) Let a and b be positive integers. Prove that if P+ is
the square of an integer, then a + b is not a product of two different
prime numbers.

03.20. (p.56) Let 1 be a positive integer such that the sum of all the

positive divisors of n (except 1) plus the number of these divisors
is equal to n. Prove that n = 2m? for some integer m.



Baltic Way 2004

Vilnius, Lithuania
November 5—November 9, 2004

04.1. (p.57 Given a sequence ay,a, a3, . .. of non-negative real num-
bers satisfying the conditions
(1) a, +az, > 3n

(2) app1+n<2v/a,-(n+1)
for all indicesn =1,2....

(a) Prove that the inequality a, > n holds for every n € IN.

(b) Give an example of such a sequence.

04.2. (p.59) Let P(x) be a polynomial with non-negative coefficients.
Prove that if P(1)P(x) > 1 for x = 1, then the same inequality
holds for each positive x.

04.3. .58 Let p,q,r be positive real numbers and n € IN. Show
that if pgr = 1, then

1 1 1
n n 1+n n 1+n n 1§1'
pt+q"+ qr+rt+ 4+ pt 4

04.4. (.59 Let x1,x7,...,x, be real numbers with arithmetic mean
X. Prove that there is a positive integer K such that the arith-
metic mean of each of the lists {x1,x2,...,xx}, {x2,x3,...,xk},
oo, {xk-1,xx}, {xk} is not greater than X.

04.5. (.59 Determine the range of the function f defined for
integers k by

f(k) = (k)g -+ (2k)5 + (3k)7 — 6k,
where (k)11 denotes the multiple of 2n + 1 closest to k.

10
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04.6. (p.50) A positive integer is written on each of the six faces of a
cube. For each vertex of the cube we compute the product of the
numbers on the three adjacent faces. The sum of these products is
1001. What is the sum of the six numbers on the faces?

04.7. p.c0) Find all sets X consisting of at least two positive integers
such that for every pair m,n € X, where n > m, there exists k € X
such that n = mk?2.

04.8. (p.61) Let f be a non-constant polynomial with integer coeffi-
cients. Prove that there is an integer n such that f(n) has at least
2004 distinct prime factors.

04.9. (p.61) A set S of n — 1 natural numbers is given (n > 3). There
exists at least two elements in this set whose difference is not
divisible by n. Prove that it is possible to choose a non-empty
subset of S so that the sum of its elements is divisible by #.

04.10. (p.62) Is there an infinite sequence of prime numbers py, pa, . ..
such that |p,+1 — 2pn| = 1 for each n € N?

04.11. .2 An m X n table is given, in each cell of which a num-
ber +1 or —1 is written. It is known that initially exactly one —1
is in the table, all the other numbers being +1. During a move, it
is allowed to choose any cell containing —1, replace this —1 by 0,
and simultaneously multiply all the numbers in the neighboring
cells by —1 (we say that two cells are neighboring if they have a
common side). Find all (m,n) for which using such moves one
can obtain the table containing zeroes only, regardless of the cell
in which the initial —1 stands.

04.12. (p.63) There are 2n different numbers in a row. By one move
we can interchange any two numbers or interchange any three
numbers cyclically (choose a, b, c and place a instead of b, b instead
of ¢ and ¢ instead of 4). What is the minimal number of moves that
is always sufficient to arrange the numbers in increasing order?

04.13. (p.64) The 25 member states of the European Union set up
a committee with the following rules: (1) the committee should
meet daily; (2) at each meeting, at least one member state should



12 Baltic Way

be represented; (3) at any two different meetings, a different set of
member states should be represented; and (4) at the n’th meeting,
for every k < n, the set of states represented should include at
least one state that was represented at the k’th meeting. For how
many days can the committee have its meetings?

04.14. (p.69) We say that a pile is a set of four or more nuts. Two
persons play the following game. They start with one pile of n > 4
nuts. During a move a player takes one of the piles that they
have and split it into two non-empty subsets (these sets are not
necessarily piles, they can contain an arbitrary number of nuts). If
the player cannot move, he loses. For which values of n does the
tirst player have a winning strategy?

04.15. (p.s5) A circle is divided into 13 segments, numbered consec-
utively from 1 to 13. Five fleas called A, B, C, D and E are sitting
in the segments 1,2,3,4 and 5. A flea is allowed to jump to an
empty segment five positions away in either direction around the
circle. Only one flea jumps at the same time, and two fleas cannot
be in the same segment. After some jumps, the fleas are back in
the segments 1,2, 3,4, 5, but possibly in some other order than they
started. Which orders are possible?

04.16. . ¢6) Through a point P exterior to a given circle pass a
secant and a tangent to the circle. The secant intersects the circle
at A and B, and the tangent touches the circle at C on the same
side of the diameter thorugh P as A and B. The projection of C on
the diameter is Q. Prove that QC bisects ZAQB.

04.17. .67 Consider a rectangle with side lengths 3 and 4, and pick
an arbitrary inner point on each side. Let x, v, z and u denote the
side lengths of the quadrilateral spanned by these points. Prove
that 25 < xz—i—yz—i—zz—l—uz < 50.

04.18. (p.7) A ray emanating from the vertex A of the triangle ABC
intersects the side BC at X and the circumcircle of ABC at Y. Prove
that v + ¥y > -
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04.19. (p.68) D is the midpoint of the side BC of the given triangle
ABC. M is a point on the side BC such that /ZBAM = ZDAC. L
is the second intersection point of the circumcircle of the triangle
CAM with the side AB. K is the second intersection point of the
circumcircle of the triangle BAM with the side AC. Prove that
KL || BC.

04.20. (p.68) Three circular arcs wq, wy, w3 with common endpoints
A and B are on the same side of the line AB; w, lies between
wy and ws. Two rays emanating from B intersect these arcs at

M;, My, M3 and Kj, Ky, K3, respectively. Prove that %;AA% = Eﬁi




Baltic Way 2005

Stockholm, Sweden
November 3—November 7, 2005

05.1. (.69 Let ap be a positive integer. Define the sequence a,,
n > 0, as follows: If

j .
a, =) _ 10’
i=0
where ¢; are integers with 0 < ¢; <9, then
iy = c%005 + C%oos Tt c;"005.

Is it possible to choose ag so that all the terms in the sequence are
distinct?

05.2. (.70) Let #, B and -y be three angles with 0 < a, 8,7 < 90°
and sina + sin B + siny = 1. Show that

| W

tan? & + tan? B+ tan® ¥ >

05.3. (p.71) Consider the sequence a; defined by a; =1, ap = %,

1
Apyo = ax + =a for k > 1.
k+2 kTt 5%+ + e or k >
Prove that
1 1
+ +---+ < 4.
aids  dxd4  dsds 98100

05.4. (p.72) Find three different polynomials P(x) with real coeffi-
cients such that P(x? + 1) = P(x)? + 1 for all real x.

05.5. (p.73) Let a, b, c be positive real numbers with abc = 1. Prove

that b
@ € <1

212 w2 t@yz2 =t

14
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05.6. .73 Let K and N be positive integers with 1 < K < N.
A deck of N different playing cards is shuffled by repeating the
operation of reversing the order of the K topmost cards and moving
these to the bottom of the deck. Prove that the deck will be back
in its initial order after a number of operations not greater than
4-N?/K2

05.7. (p.74) A rectangular array has n rows and six columns, where
n > 2. In each cell there is written either 0 or 1. All rows in
the array are different from each other. For each pair of rows
(x1,x2,...,%) and (y1,Y2,...,Ys), the row (x1y1, X2V, ..., X6Y6)
can also be found in the array. Prove that there is a column in
which at least half of the entries are zeroes.

05.8. (p.75 Consider a grid of 25 x 25 unit squares. Draw with a
red pen contours of squares of any size on the grid. What is the
minimal number of squares we must draw in order to colour all
the lines of the grid?

05.9. (.75 A rectangle is divided into 200 x 3 unit squares. Prove
that the number of ways of splitting this rectangle into rectangles
of size 1 x 2 is divisible by 3.

05.10. (p.76) Let m = 30030 =2-3-5-7-11-13 and let M be the
set of its positive divisors which have exactly two prime factors.
Determine the minimal integer n with the following property: for
any choice of n numbers from M, there exist three numbers a, b, c
among them satisfying a-b - c = m.

05.11. (.77 Let the points D and E lie on the sides BC and AC,
respectively, of the triangle ABC, satisfying BD = AE. The line
joining the circumcentres of the triangles ADC and BEC meets the
lines AC and BC at K and L, respectively. Prove that KC = LC.

05.12. (p.77) Let ABCD be a convex quadrilateral such that BC =
AD. Let M and N be the midpoints of AB and CD, respectively.
The lines AD and BC meet the line MN at P and Q, respectively.
Prove that CQ = DP.
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05.13. .78) What is the smallest number of circles of radius V2
that are needed to cover a rectangle

(a) of size 6 x 3?

(b) of size 5 x 3?

05.14. (p.79) Let the medians of the triangle ABC meet at M. Let D
and E be different points on the line BC such that DC = CE = AB,
and let P and Q be points on the segments BD and BE, respectively,
such that 2BP = PD and 2BQ = QE. Determine Z/PMQ.

05.15. (p.79) Let the lines e and f be perpendicular and intersect
each other at O. Let A and B lie on e and C and D lie on f, such
that all the five points A, B, C, D and O are distinct. Let the
lines b and d pass through B and D respectively, perpendicularly
to AC; let the lines a and ¢ pass through A and C respectively,
perpendicularly to BD. Let a and b intersect at X and ¢ and d
intersect at Y. Prove that XY passes through O.

05.16. (p.s0) Let p be a prime number and let n be a positive integer.
Let g be a positive divisor of (n + 1)? — n?. Show that g — 1 is
divisible by p.

05.17. (p.s1) A sequence (x,), n > 0, is defined as follows: xp = g,
x1 =2and x;, = 2x,_1X,—2 — Xy—1 — Xy_2 + 1 for n > 1. Find all
integers a such that 2x3, — 1 is a perfect square for all n > 1.
05.18. (. 52) Let x and y be positive integers and assume that
z =4xy/(x +y) is an odd integer. Prove that at least one divisor
of z can be expressed in the form 4n — 1 where 7 is a positive
integer.

05.19. (.52 Is it possible to find 2005 different positive square
numbers such that their sum is also a square number?

05.20. (p.s3) Find all positive integers n = p1ps - - - px which divide

(p1+1)(p2+1)---(pk+ 1), where p1p2 - - - py is the factorization
of n into prime factors (not necessarily distinct).



Baltic Way 2006
Turku, Finland
November 1-November 5, 2006

06.1. (p.s3) For a sequence a1, 4y, a3, . .. of real numbers it is known
that
Ay = ay_1+ an2 forn=2,3,4,....

What is the largest number of its consecutive elements that can all
be positive?

06.2. (p. 84 Suppose that the real numbers a; € [-2,17], i =
1,2,...,59, satisfy a; + a» + - - - 4+ as9 = 0. Prove that

a3+ a3+ -+ ady < 2006.

06.3. (p.s4) Prove that for every polynomial P(x) with real coeffi-
cients there exist a positive integer m and polynomials P; (x), P»(x),
.., Pu(x) with real coefficients such that

P(x) = (P1(x))° + (Po(x))° + - + (Pu(x)).

06.4. p.s5 Leta, b, ¢, d, e, f be non-negative real numbers satisfying
a+b+c+d+e+ f=6. Find the maximal possible value of

abc + bed + cde +def +efa+ fab

and determine all 6-tuples (a,b,¢,d, e, f) for which this maximal
value is achieved.

06.5. (p.86) An occasionally unreliable professor has devoted his
last book to a certain binary operation *. When this operation is
applied to any two integers, the result is again an integer. The
operation is known to satisfy the following axioms:

(@) xx(xxy)=yforalx,yeZ

(b) (x+xy)*xy=xforall x,y € Z.

17
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The professor claims in his book that

(C1) the operation * is commutative: x xy = y x x for all x,y € Z.

(C2) the operation x is associative: (x *y)*z = x* (y *z) for
all x,y,z € Z.

Which of these claims follow from the stated axioms?

06.6. (p.s7) Determine the maximal size of a set of positive integers
with the following properties:

1) The integers consist of digits from the set {1,2,3,4,5,6}.

(
(2) No digit occurs more than once in the same integer.
(3) The digits in each integer are in increasing order.

(

4) Any two integers have at least one digit in common (possibly
at different positions).

(5) There is no digit which appears in all the integers.

06.7. (p.s7) A photographer took some pictures at a party with 10
people. Each of the 45 possible pairs of people appears together
on exactly one photo, and each photo depicts two or three people.
What is the smallest possible number of photos taken?

06.8. (p.83) The director has found out that six conspiracies have
been set up in his department, each of them involving exactly
three persons. Prove that the director can split the department in
two laboratories so that none of the conspirative groups is entirely
in the same laboratory.

06.9. (p.59) To every vertex of a regular pentagon a real number is
assigned. We may perform the following operation repeatedly:
we choose two adjacent vertices of the pentagon and replace each
of the two numbers assigned to these vertices by their arithmetic
mean. Is it always possible to obtain the position in which all five
numbers are zeroes, given that in the initial position the sum of all
five numbers is equal to zero?
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06.10. (p.59) 162 pluses and 144 minuses are placed in a 30 x 30
table in such a way that each row and each column contains at
most 17 signs. (No cell contains more than one sign.) For every
plus we count the number of minuses in its row and for every
minus we count the number of pluses in its column. Find the
maximum of the sum of these numbers.

06.11. (p.90) The altitudes of a triangle are 12, 15 and 20. What is
the area of the triangle?

06.12. (p.90) Let ABC be a triangle, let B; be the midpoint of the
side AB and C; the midpoint of the side AC. Let P be the point
of intersection, other than A, of the circumscribed circles around
the triangles ABC; and AB;C. Let P; be the point of intersection,
other than A, of the line AP with the circumscribed circle around
the triangle AB;C;. Prove that 2AP = 3AP;.

06.13. (.91 In a triangle ABC, points D, E lie on sides AB, AC
respectively. The lines BE and CD intersect at F. Prove that if

BC?=BD-BA+CE-CA,

then the points A, D, F, E lie on a circle.

06.14. (p.92) There are 2006 points marked on the surface of a sphere.
Prove that the surface can be cut into 2006 congruent pieces so
that each piece contains exactly one of these points inside it.
06.15. (p.92) Let the medians of the triangle ABC intersect at the
point M. A line t through M intersects the circumcircle of ABC
at X and Y so that A and C lie on the same side of t. Prove that
BX-BY = AX - AY +CX - CY.

06.16. (. 93) Are there four distinct positive integers such that
adding the product of any two of them to 2006 yields a perfect
square?

06.17. (p. 1) Determine all positive integers n such that 3" + 1 is
divisible by n?.

06.18. (p.94) For a positive integer n let a,, denote the last digit of
n""). Prove that the sequence (a,) is periodic and determine the
length of the minimal period.
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06.19. (.95 Does there exist a sequence ay,4ay,4a3,... of positive
integers such that the sum of every n consecutive elements is
divisible by n? for every positive integer n?

06.20. (p.96) A 12-digit positive integer consisting only of digits 1,
5 and 9 is divisible by 37. Prove that the sum of its digits is not
equal to 76.
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Baltic Way 2002

02.1. Solve the system of equations

a® + 3ab® + 3ac* — 6abc = 1
b® + 3ba® + 3bc* — 6abc = 1
¢® + 3ca® + 3ch?* — 6abc = 1
in real numbers.
Answer:a=1,b=1,c=1.
Solution: Denoting the left-hand sides of the given equations as
A, B and C, the following equalities can easily be seen to hold:
~A+B+C=(—a+b+c)
A—-B+C=(a—b+c)
A+B—-C=(a+b—c)°

Hence, the system of equations given in the problem is equivalent
to

(ma+b+c))=1, (a—-b+c)P’=1 (a+b-c)P=1,
which gives
—a+b+c=1, a—b+c=1, a+b—c=1.

The unique solution of this system is (a,b,¢) = (1,1,1).
02.2. Let a, b, c, d be real numbers such that

a+b+c+d=-2, (02.1)
ab+ac—+ad + bc+bd+cd = 0. (02.2)

Prove that at least one of the numbers a, b, c,d is not greater than —1.
Solution: We can assume that 4 is the least among a, b, c,d (or one
of the least, if some of them are equal), there are n > 0 negative
numbers among a, b, c,d, and the sum of the positive ones is x.
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Then we obtain
—2=a+b+c+d>na+x. (02.3)
Squaring we get 4 = a* 4+ b? + ¢* + d?, which implies
4<n-a®+x? (02.4)

as the square of the sum of positive numbers is not less than the
sum of their squares.

The inequality (02.3) implies that —x > na + 2, and since
both sides are negative we get x> < (na + 2)2. Combining this
with (02.4) we obtain na® + (na + 2)? > 4, which implies that

a? + na® + 4a > 0.

As n < 3 (if all the numbers are negative, the second condition of
the problem cannot be satisfied), we obtain from the last inequality
that 442 + 4a > 0, whence

a(a+1) > 0.

As a < 0 it follows that a < —1.

Solution 2: Assume that a,b,c,d > —1. Denoting A = a+1,
B=b+1,C=c+1,D=d+1wehave A,B,C,D > 0. Then the
tirst equation gives

A+B+C+D=2. (02.5)
We also have
ab=(A-1)(B—1)=AB—A—-B+1.

Adding five similar terms to the last one we get from the second
equation

AB+ AC+ AD+BC+BD+CD—3(A+B+C+D)+6=0.



Solutions - 2002 25

In view of (02.5) this implies
AB+ AC+AD+BC+BD+CD =0,

a contradiction as all the unknowns A, B, C, D were supposed to
be positive.

Solution 3: Assume that the conditions (02.1) and (02.2) of the
problem hold, and that

ab,c,d > —1. (02.6)

If all of a,b, c,d were negative, then (02.2) could not be satisfied,
so at most three of them are negative. If two or less of them
were negative, then (02.6) would imply that the sum of negative
numbers, and hence also the sum a + b + ¢ + d, is greater than
2. (—1) = —2, which contradicts (02.1). So exactly three of a,b, ¢, d
are negative and one is nonnegative. Let d be the nonnegative one.
Thend = -2—(a+b+c¢) < —2—(-1—-1-1) = 1. Obviously
|la|, |b], |c],|d| < 1. Squaring (02.1) and subtracting 2 times (02.2),
we get

P+ +E+d? =4,
but
>+ 024+ 24 d% = |a* + |b]* + |c]* + |d|? < 4,

a contradiction.

02.3. Find all sequences ag < a; < ap < --- of real numbers such that
Ay = a2 + a2 (02.7)

for all integers m,n > 0.
Answer: a, =0, a, = % and a, = n.
Solution: Substituting m = n = 0 into (02.7) we get ap = 2a(75,

hence either ay =  or ag = 0. We consider these cases separately.
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(1) If ag = % then substituting m = 1 and n = 0 into (02.7) we
obtain a; = a3 + , whence (a1 — %)2 = 0and a; = 3. Now,
Ay = ap 2 = 2a7 = 3,
ag = Ay = 2a3 = 3,
etc., implying that a, = § for arbitrarily large natural i and, due

to monotonicity, a, = % for every natural 7.
(2) If ap = 0 then by substituting m = 1, n = 0 into (02.7) we obtain
am = a% and hence, a; = 0 or a; = 1. This gives two subcases.

(2a) If ap = 0 and a; = 0 then by the same technique as above
we see that a,, = 0 for arbitrarily large natural i and, due to
monotonicity, 4, = 0 for every natural n.

(2b) If a9 = 0 and a; = 1 then we compute
ay = 2,12 = Za% =2,
ay = Ap e = a% =4,
as = Ay 12 :a%—i—a% =5.

Now,
a%—i—aﬁ = a5 :aé—i—a% = 25,

hence a% =25 —16 = 9 and a3 = 3. Further,
ag = Ay = 205 =8,
a9 =azp,p =a; =9,
a0 = Az 2 = a3 + a3 = 10.
From the equalities
ag + a3 = aly + a,
a%—i—a% = u%—l—a%,
we also conclude that a4 = 6 and a7 = 7. It remains to note that
(2k +1)2 4 (k—2)2 = (2k — 1) + (k+2)?,
(2k +2)2 4 (k — 4)2 = (2k —2)% + (k+ 4)?,

and by induction it follows that a,, = n for every natural n.
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02.4. Let n be a positive integer. Prove that

Y a1l - x)? < (1- 1)

i=1
for all nonnegative real numbers x1,xz, ..., X, such that x; +xp 4 - - - +
X, = 1.
Solution: Expanding the expressions at both sides we obtain the
equivalent inequality

2 1
3 2
— S+ 2 F—— 4+ — >0.
;%+ ;% i
It is easy to check that the left-hand side is equal to

Y (2-2—x)(x— 1)

and hence is nonnegative.

Solution 2: First note that for n = 1 the required condition holds
trivially, and for n = 2 we have

x(1-x)24+(1—-x)x*=x(1-x) < <x+(;—x)>2 = (1 - ;)2

We now consider the case n > 3.

Assume first that for each index i the inequality x; < 3 holds.
Let f(x) = x(1 — x)? = x — 2x?> + x>, then f”(x) = 6x — 4. Hence,
the function f is concave in the interval [O, %] Thus, from Jensen’s
inequality we have

é (1w = L wo (B

=n-%<1—ﬁ>2=<1—%>2.

If some x; > % then we have

S =

)

xi(1—x)?<1-(1-3)% =3,
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For the rest of the terms we have

ZX]'(l — X]')Z < ZX]' =1- x; < %
J#i j#i
Hence,
n
2
Yul-xf<gtz=g<(1-3)
i=1
asn > 3.

02.5. Find all pairs (a,b) of positive rational numbers such that

Va+vVb=1\/2+ 3.

Answer: The two solutions are (a,b) = (1,3) and (a,b) = (3, 3).
Solution: Squaring both sides of the equation gives

a+b+2vVab=2++3 (02.8)

so 2v/ab = r + /3 for some rational number r. Squaring both
sides of this gives 4ab = r2 + 3 4 2rv/3, so 2r+/3 is rational, which
implies r = 0. Hence ab = 3/4 and substituting this into (02.8)

gives a + b = 2. Solving for a and b gives (a,b) = (%,%) or

(a,0) = (5,3)-

02.6. The following solitaire game is played on an m x n rectangular
board, m,n > 2, divided into unit squares. First, a rook is placed on
some square. At each move, the rook can be moved an arbitrary number of
squares horizontally or vertically, with the extra condition that each move
has to be made in the 90° clockwise direction compared to the previous
one (e.g. after a move to the left, the next one has to be done upwards, the
next one to the right etc.). For which values of m and n is it possible that
the rook visits every square of the board exactly once and returns to the
first square? (The rook is considered to visit only those squares it stops
on, and not the ones it steps over.)

Answer: It is possible precisely when m and n are even.
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Solution: First, consider any row that is not the row where the
rook starts from. The rook has to visit all the squares of that row
exactly once, and on its tour around the board, every time it visits

this row, exactly two squares get visited. Hence, m must be even;

a similar argument for the columns shows that n must also be

even.

It remains to prove that for any even m
and 7 such a tour is possible. We will show
it by an induction-like argument. Labelling
the squares with pairs of integers (i, j), where
1<i<mand1l <j < n, we start moving
from the square (1,5 + 1) and first cover all
the squares of the first and last columns in the
order shown in the figure to the right, except
for the squares (m, 5) and (m, 5 +1); note that
we finish on the square (1, 7).

The next square to visit is (m — 1, %) and
now we will cover the columns numbered 2
and m — 1, except for the two middle squares
in column 2. Continuing in this way we can

visit all the squares except for the two middle squares in every

2
6
10
1
9
5
2 114|22|34|35|23|15
6 |18|26|38|39|27|19
10{ [30f |31 |11
1 21| |40| |20
9 117|29|37|36|28|16
5113|25(33|32|24|12

second column (note that here we need the assumption that m and
n are even). The rest of the squares can be visited easily.

02.7. We draw n convex quadrilaterals in the plane. They divide the
plane into regions (one of the regions is infinite). Determine the maximal

possible number of these regions.

Answer: The maximal number of regions is 4n? — 4n + 2.

Solution: One quadrilateral produces two regions. Suppose we

have drawn k quadrilaterals Qj, ..., Qx and produced a; regions.
We draw another quadrilateral Qx4 and try to evaluate the num-

ber of regions a1 now produced. Note that if a vertex of Q;
is located on an edge of another quadrilateral then it is possible
to move this vertex a little bit to obtain a configuration with the
same number of regions or one more region. Hence there exists a
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maximal configuration where no vertex of any Q; is located on an
edge of another quadrilateral, and in the following, looking only
for the maximal number of regions, we can assume that no vertex
of a quadrilateral is located on an edge of another quadrilateral.

Because of this fact and the convexity of the Q;’s, any one of the
four sides of Q1 meets at most two sides of any Q;. So the sides
of Q41 are divided into at most 2k + 1 segments, each of which
potentially increases the number of regions by one (being part of
the common boundary of two parts, one of which is counted in
Elk).

But if a side of Qi1 intersects the boundary of each Qj,1<
j < k twice, then its endpoints (vertices of Qj 1) are in the region
outside of all the Q,’s, and the segments meeting at such a vertex
are on the boundary of a single new part (recall that it makes no
sense to put vertices on edges of another quadrilaterals). This
means that ay1 —a, < 4(2k+ 1) — 4 = 8k. By considering squares
inscribed in a circle one easily sees that the situation where aj1 —
ar = 8k can be reached.

It remains to determine the expression for the maximal ay.
Since the difference a1 — a; is linear in k, a; is a quadratic
polynomial in k, and a9 = 2. So a; = Ak*> + Bk +2. We have
8k = a1 —ax = A(2k+ 1) + B for all k. This implies A = 4,
B = —4,and a, = 4n% — 4n + 2.

02.8. Let P be a set of n > 3 points in the plane, no three of which are
on a line. How many possibilities are there to choose a set T of (”51)
triangles, whose vertices are all in P, such that each triangle in T has a
side that is not a side of any other triangle in T?

Answer: There is one possibility for n = 3 and n possibilities for
n > 4.

Solution: For a fixed point x € P, let T, be the set of all triangles
with vertices in P which have x as a vertex. Clearly, |Ty| = (";1),
and each triangle in T, has a side which is not a side of any other
triangle in Ty. For any x,y € P such that x # y, we have T, # T,
if and only if n > 4. We will show that any possible set T is equal
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to Ty for some x € P, that is, that the answer is 1 for n = 3 and n
forn > 4.
Let

T = {ti ‘i:l,z,_,,,(”;l)} S = {si]i:1,2,...,(n51)}

such that T is a set of triangles whose vertices are all in P, and s;
is a side of t; but not of any ¢;, j # i. Furthermore, let C be the
collection of all the (3) triangles whose vertices are in P. Note that

IC\T| =) - (") = ("3).

Let m be the number of pairs (s, ) such that s € S is a side
of t € C\ T. Since every s € S is a side of exactly n — 3 triangles
from C \ T, we have

m=1S|-(n—=3)=("")-(n—3)=3-(";1)=3-|C\T|.

On the other hand, every t € C \ T has at most three sides from S.
By the above equality, for every t € C \ T, all its sides must be in
S.

Assume that for p € P there is a side s € S such that p is an
endpoint of s. Then p is also a vertex of each of the n — 3 triangles
in C \ T which have s as a side. Consequently, p is an endpoint of
n — 2 sides in S. Since every side in S has exactly 2 endpoints, the
number of points p € P which occur as a vertex of some s € S is

2-|s| 2 n—1 1

n—2 n-2 2 ) '
Consequently, there is an x € P which is not an endpoint of any
s € S, and hence T must be equal to T.

02.9. Two magicians show the following trick. The first magician goes
out of the room. The second magician takes a deck of 100 cards labelled
by numbers 1,2, ...,100 and asks three spectators to choose in turn one
card each. The second magician sees what card each spectator has taken.
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Then he adds one more card from the rest of the deck. Spectators shuffle
these four cards, call the first magician and give him these four cards.
The first magician looks at the four cards and “guesses” what card was
chosen by the first spectator, what card by the second and what card by
the third. Prove that the magicians can perform this trick.
Solution: We will identify ourselves with the second magician.
Then we need to choose a card in such a manner that another
magician will be able to understand which of the four cards we
have chosen and what information it gives about the order of the
other cards. We will reach these two goals independently.

Let a, b, c be the remainders of the labels of the spectators’
three cards modulo 5. There are three possible cases.

(1) All the three remainders coincide. Then choose a card with a
remainder not equal to the remainder of the spectators’ cards.
Denote this remainder 4.

Note that we now have two different remainders, one of them in
three copies (this will be used by the first magician to distinguish
between the three cases). To determine which of the cards is
chosen by us is now a simple exercise in division by 5. But we
must also encode the ordering of the spectators” cards. These cards
have a natural ordering by their labels, and they are also ordered
by their belonging to the spectators. Thus, we have to encode
a permutation of three elements. There are six permutations of
three elements, let us enumerate them somehow. Then, if we want
to inform the first magician that spectators form a permutation
number k with respect to the natural ordering, we choose the card
number 5k + d.

(2) The remainders a, b, c are pairwise different. Then it is clear that,
modulo 5, exactly one of the following possibilities takes place:

b—al=la—c|, |la—bl=|b—c|, or |a—c|=|c—0b| (02.9)

It is not hard to prove this by a case study, but one could also
imagine choosing three vertices of a regular pentagon — these
vertices always form an isosceles, but not an equilateral triangle.
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Each of these possibilities has one of the remainders distin-
guished from the other two remainders (these distinguished re-
mainders are a, b, ¢, respectively). Now, choose a card from the rest
of the deck having the distinguished remainder modulo 5. Hence,
we have three different remainders, one of them distinguished by (02.9)
and presented in two copies. Let d be the distinguished remainder
and s = 5m + d be the spectator’s card with this remainder.

Now we have to choose a card r with the remainder d such that
the first magician would be able to understand which of the cards
s and r was chosen by us and what permutation of the spectators
it implies. This can be done easily: If we want to inform the first
magician that the spectators form a permutation number k with
respect to the natural ordering, we choose the card number s + 5k
(mod 100).

The decoding procedure is easy: If we have two numbers
p and g that have the same remainder modulo 5, calculate p — g
mod 100 and g —p mod 100. If p —g mod 100 > g —p mod 100
then r = g is our card and s = p is the spectator’s card. (The case
p—g mod 100 = g — p mod 100 is impossible since the sum of
these numbers is equal to 100, and one of them is not greater than
6-5=230.)

(3) Two remainders (say, a and b) coincide. Let us choose a card with
the remainder d = (a + ¢)/2 mod 5. Then |a — d| = |d — ¢| mod 5,
so the remainder d is distinguished by (02.9). Hence we have
three different remainders, one of them distinguished by (02.9) and one
of the non-distinguished remainders presented in two copies. The first
magician will easily determine our card, and the rule to choose the
card in order to enable him also determine the order of spectators
is similar to the one in the first case.

Solution 2: This solution gives a non-constructive proof that the
trick is possible. For this, we need to show there is an injective
mapping from the set of ordered triples to the set of unordered
quadruples that additionally respects inclusion.

To prove that the desired mapping exists, let’s consider a bi-
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partite graph such that the set of ordered triples T and the set of
unordered quadruples Q form the two disjoint sets of vertices and
there is an edge between a triple and a quadruple if and only if
the triple is a subset of the quadruple.

For each triple t € T, we can add any of the remaining 97 cards
to it, and thus we have 97 different quadruples connected to each
triple in the graph. Conversely, for each quadruple g € Q, we can
remove any of the four cards from it, and reorder the remaining
three cards in 3! = 6 different ways, and thus we have 24 different
triples connected to each quadruple in the graph.

According to the Hall’s theorem, a bipartite graph (T, Q, E)
has a perfect matching if and only if for each subset T' C T the set
of neighbours of T’, denoted N(T’), satisfies [IN(T")| > |T’|.

To prove that this condition holds for our graph, consider any
subset T’ C T. Because we have 97 quadruples for each triple, and
there can be at most 24 copies of each of them in the multiset of
neighbours, we have |[N(T”)| > 32|T'| > 4|T’|, which is even much
more than we need. Thus, the desired mapping is guaranteed to
exist.

Solution 3: Let the three chosen numbers be (x1, x2, x3). At least
one of the sets {1,2,...,24}, {25,26,...,48}, {49,50,...,72} and
{73,74,...,96} contains none of x1, xp, x3; let S be such set. We
split S into six parts S = S; U Sy U - - U S so that the first four
elements of S are in Sq, the four next in S;, etc. Now we choose
i€{1,2,...,6} corresponding to the lexicographic order of the
numbers x1, xp, x3 (if x1 < xp < x3theni =1, if x; < x3 < xp then
i=2,...,iff x3 < x < x1 then i = 6). At last let j be the number
of elements in {x1,xp, x3} that are greater than elements of S
(note that any xi, k = 1, 2,3, is either greater or smaller than all the
elements of S). Now we choose x4 € S;sothat x; +x2+x3+ x4 =]
(mod 4) and add the card number x4 to those three cards.
Decoding of {a,b,c,d} is straightforward. We first put the
numbers into increasing order and then calculate a +b +c +d
mod 4 showing the added card. The added card belongs to some
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S;(i€{1,2,...,6}) for some S and i shows us the initial ordering
of cards.

02.10. Let N be a positive integer. Two persons play the following game.
The first player writes a list of positive integers not greater than 25, not
necessarily different, such that their sum is at least 200. The second
player wins if he can select some of these numbers so that their sum S
satisfies the condition 200 — N < S < 200 + N. What is the smallest
value of N for which the second player has a winning strategy?
Answer: N = 11.
Solution: If N = 11, then the second player can simply remove
numbers from the list, starting with the smallest number, until the
sum of the remaining numbers is less than 212. If the last number
removed was not 24 or 25, then the sum of the remaining numbers
is at least 212 — 23 = 189. If the last number removed was 24
or 25, then only 24’s and 25’s remain, and there must be exactly 8
of them since their sum must be less than 212 and not less than
212 — 24 = 188. Hence their sum S satisfies 8 -24 = 192 < S <
8-25 = 200. In any case the second player wins.

On the other hand, if N < 10, then the first player can write
25 two times and 23 seven times. Then the sum of all numbers is
211, but if at least one number is removed, then the sum of the
remaining ones is at most 188 — so the second player cannot win.

02.11. Let n be a positive integer. Consider n points in the plane such
that no three of them are collinear and no two of the distances between
them are equal. One by one, we connect each point to the two points
nearest to it by line segments (if there are already other line segments
drawn to this point, we do not erase these). Prove that there is no point
from which line segments will be drawn to more than 11 points.
Solution: Suppose there exists a point A such that A is connected
to 12 points. Then there exist three points B, C and D such that
ZBAC <60°, ZBAD < 60° and ZCAD < 60°.

We can assume that AD > AB and AD > AC. By the cosine
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law we have

BD? = AD? + AB?> —2ADAB cos /BAD
< AD? + AB? —2AB?cos /BAD
= AD? + AB?(1 —2cos ZBAD)
< AD?

since 1 < 2cos(£BAD). Hence BD < AD. Similarly we get
CD < AD. Hence A and D should not be connected which is a
contradiction.

Remark: It would be interesting to know whether 11 can be
achieved or the actual bound is lower.

02.12. A set S of four distinct points is given in the plane. 1t is known
that for any point X € S the remaining points can be denoted by Y, Z
and W so that

XY = XZ+ XW.

Prove that all the four points lie on a line.

Solution: Let S = {A,B,C,D} and let AB be the longest of the
six segments formed by these four points (if there are several
longest segments, choose any of them). If we choose X = A then
we must also choose Y = B. Indeed, if we would, for example,
choose Y = C, we should have AC = AB + AD contradicting the
maximality of AB. Hence we get

AB = AC+ AD. (02.10)
Similarly, choosing X = B we must choose Y = A and we obtain

AB = BC+ BD. (02.11)
On the other hand, from the triangle inequality we know that

AB < AC + BC,
AB < AD + BD,
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where at least one of the inequalities is strict if all the four points
are not on the same line. Hence, adding the two last inequalities
we get

2AB < AC+ BC+ AD + BD.
On the other hand, adding (02.10) and (02.11) we get
2AB = AC+ AD+ BC + BD;

a contradiction.

02.13. Let ABC be an acute triangle with ZBAC > ZBCA, and let
D be a point on the side AC such that AB = BD. Furthermore, let F
be a point on the circumcircle of triangle ABC such that the line FD is
perpendicular to the side BC and points F, B lie on different sides of the
line AC. Prove that the line FB is perpendicular to the side AC.
Solution: Let E be the other point on the circumcircle of triangle
ABC such that AB = EB. Let D’ be the point of intersection of
side AC and the line perpendicular to side BC, passing through
E. Then ZECB = ZBCA and the triangle ECD’ is isosceles. As
ED’ L BC, the triangle BED' is also isosceles and BE = BD'
implying D = D’. Hence, the points E, D, F lie on one line. We
now have

ZEFB+ /FDA = ZBCA + ZEDC = 90°.

The required result now follows.

\ E
X

A c
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02.14. Let L, M and N be points on sides AC, AB and BC of tri-
angle ABC, respectively, such that BL is the bisector of angle ABC
and segments AN, BL and CM have a common point. Prove that if
ZALB = ZMNB then ZLNM = 90°.
Solution: Let P be the intersection point of lines MN and AC.
Then ZPLB = ZPNB and the quadrangle PLNB is cyclic. Let w
be its circumcircle. It is sufficient to prove that PL is a diameter
of w.

Let Q denote the second intersection point of the line AB and w.
Then /PQB = /PLB and

/ZQPL =/ZQBL = ZLBN = ZLPN,
and the triangles PAQ and BAL are similar. Therefore,

PQ BL
A = BA- (02.12)
We see that the line PL is a bisector of the inscribed angle NPQ.
Now in order to prove that PL is a diameter of w it is sufficient to
check that PN = PQ.

The triangles NPC and LBC are similar, hence

PN BL

PC ~ BC (02.13)
Note also that

AB AL

BC ~ CL (02.14)

by the properties of a bisector. Combining (02.12), (02.13) and
(02.14) we have

PN _ AL CP
PQ AP CL’
We want to prove that the left-hand side of this equality equals 1.
This follows from the fact that the quadruple of points (C, A, L, P)
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is harmonic, as can be proven using standard methods (for exam-
ple by considering the quadrilateral MBNS, where S = MC N AN).
B
N

Q

02.15. A spider and a fly are sitting on a cube. The fly wants to
maximize the shortest path to the spider along the surface of the cube.
Is it necessarily best for the fly to be at the point opposite to the spider?
(“Opposite” means “symmetric with respect to the centre of the cube”.)
Answer: No.

Solution: Suppose that the side of the cube is 1 and the spider
sits at the middle of one of the edges. Then the shortest path to
the middle of the opposite edge has length 2. However, if the fly
goes to a point on this edge at distance s from the middle, then
the length of the shortest path is

min(\/m, Vit (G- 5)2).

If 0 < s < (3—+/7)/2, then this expression is greater than 2.

02.16. Find all nonnegative integers m such that
2
Ay = (22m+1> + 1

is divisible by at most two different primes.

Solution: Obviously m = 0,1, 2 are solutions as ap = 5, a1 = 65 =
5-13, and a, = 1025 = 25-41. We show that these are the only
solutions.
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Assume that m > 3 and that a4, contains at most two different
prime factors. Clearly, a,, = 4*""! + 1 is divisible by 5, and

Ay = (22m+1 4om+l 4 1) . (22m+1 _omtl 1).

The two above factors are relatively prime as they are both odd
and their difference is a power of 2. Since both factors are larger
than 1, one of them must be a power of 5. Hence,

2"t (2m£1) =5'"-1=(5-1)-(1+5+---+5"1)

for some positive integer t, where =+ reads as either plus or minus.
For odd ¢ the right-hand side is not divisible by 8, contradicting
m > 3. Therefore, t must be even and

ML (2m£1) = (572 - 1) (5% +1).

Clearly, 52 + 1 =2 (mod 4). Consequently, 5/ — 1 = 2™ -  for
some odd k, and 5//% 41 = 2" - k + 2 divides 2(2" £ 1), that is,

2l k12" 41,
This implies k = 1, finally leading to a contradiction since
21 <241 < 202" 1)

for m > 3.
02.17. Show that the sequence

2002 2003 2004
2002 /" \2002/" \2002)" """’
considered modulo 2002, is periodic.
Solution: Define
= (})

and note that

k k 1 k—
1 =2, = () = () = (1) = >
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Let m be any positive integer. We will prove by induction on k that
the sequence {xk}*_, is periodic modulo m. For k = 1 it is obvious
that x& = n is periodic modulo m with period m. Therefore it
will suffice to show that the following is true: A sequence {x,} is
periodic modulo m if its difference sequence, d,, = x,41 — Xp, i periodic
modulo m.

Indeed, let t be the period of {d, } and h be the smallest positive
integer such that i(x; — x9) =0 (mod m). Then

n+ht—1 n—1 -1
Xpaht = X0+ Zd]‘ = x0+ Zdj+hzdj
=0 =0 =0

=Xy +h(xt —x0) =x, (mod m)

for all n, so the sequence {x,} is in fact periodic modulo m (with
a period dividing ht).

02.18. Find all integers n > 1 such that any prime divisor of n® — 1 is a
divisor of (n® —1)(n? —1).

Answer: Only n = 2.

Solution: Consider the equality

n—1=m>—n+1)(n+1)n®-1).

The integer n* —n+1 = n(n — 1) + 1 clearly has an odd divisor p.
Then p | n® + 1. Therefore, p does not divide n® — 1 and conse-
quently p | n? — 1. This implies that p divides (n® +1) + (n> — 1) =
n*(n+1).

As p does not divide 1, we obtain p | n+ 1. Also, p | (n* —
1)—(n*—n+1)=n—2.Fromp|n+1and p | n—2 it follows
that p = 3, so n?> — n+ 1 = 3 for some positive integer .

The discriminant of the quadratic n> — n + (1 — 3") must be a
square of an integer, hence

1-4(1-3)=3(4-3"1-1)

must be a square of an integer. Since for » > 2 the number
4 .31 _1 is not divisible by 3, this is possible only if r = 1. So
n>—n—2=0andn=2.
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02.19. Let n be a positive integer. Prove that the equation
1,1 _
Xtyt+tyty= 3n

does not have solutions in positive rational numbers.
Solution: Suppose x = g and y = I satisfy the given equation,
where p,q,1,s are positive integers and ged(p, q) = ged(r,s) = 1.
We have ; S
P + -+ 1 + - =13n,

a9 s p T
or

(P* +4%)rs + (r* +5*) pq = 3npqrs,

sors | (r* 4 s?)pg. Since ged(r,s) = 1, we have ged (r? +2,1s) = 1
and rs | pg. Analogously pq | rs, so rs = pg and hence there are
either two or zero integers divisible by 3 among p, g,7,5. Now we
have

(p* + q*)rs + (1* + 5%)rs = 3n(rs)?,

p2 —|—q2 + 12 4 5% = 3nrs,

but 3nrs =0 (mod 3) and p? + g2 + r? + s? is congruent to either 1
or 2 modulo 3, a contradiction.

02.20. Does there exist an infinite non-constant arithmetic progression,
each term of which is of the form a®, where a and b are positive integers
with b > 2?

Answer: No.

Solution: For an arithmetic progression ay, ay, . .. with difference
d the following holds:

Sn:l+i+...+ 1 :l_|_ 1 e+ 1
a,  ap ayy1 a1 a1 +d a; + nd
SRS S I
“m\1 2 n+1/’

where m = max(a;,d). Therefore S, tends to infinity when n
increases.
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On the other hand, the sum of reciprocals of the powers of a
natural number x # 1 is

st = — — .
X2 x 1-1 x(x—1)

Hence, the sum of reciprocals of the terms of the progression
required in the problem cannot exceed

LIPS NSRS S SO T S
1 1-2 2-3 1 2 2 3

a contradiction.

=2,

Solution 2: Let ay = a9 +dk, k = 0,1, .... Choose a prime number
p>dandsetk' = (p—ap)d ! (mod p?). Thenap =ag+kd=1p
(mod p?) and hence, aj can not be a power of a natural number.

Baltic Way 2003

03.1. Let Q- be the set of positive rational numbers. Find all functions

f: Q4 — Q4 which for all x € Q. fulfil
M) f(3) = f(x)
@ (1+)f(0) = f(x+1)

Solution: Set g(x) = f;gg Function g fulfils (1), (2) and g(1) = 1.

First we prove that if ¢ exists then it is unique. We prove that
g is uniquely defined on x = g by induction on max(p,q). If
max(p,q) =1then x =1and g(1) = 1. If p = g then x = 1 and
¢(x) is unique. If p # g then we can assume (according to (1)) that
p > gq. From (2) we get g(s) =(1+ ﬁ)g(%). The induction
assumption and max(p,q) > max(p —g,9) > 1 now give that g(g)
is unique.

Define the function g by g( ) = pq where p and g are chosen
such that ged(p,q) = 1. Itis eas1ly seen that g fulfils (1), (2)
and ¢(1) = 1. All functions fulfilling (1) and (2) are therefore

f(£) = apq, where ged(p,q) = 1and a € Q.
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03.2. Prove that any real solution of
X +px+g=0

satisfies the inequality 4gx < p>.

Solution: Let x( be a root of the qubic, then x> + px +¢q = (x —
x0)(x2 +ax +b) = x>+ (a — x0)x% + (b — axp)x — bxp. So a = x,
p=>b—axy=b—x3, —q = bxo. Hence p* = b? — 2bx3 + x3. Also
4x0q = —4x3b. So p? — 4xoq = b* +2bx3 + x§ = (b+ x3)? > 0.
Solution 2: As the equation xox? + px + g = 0 has a root (x = xo),

we must have D > 0 < p? —4gxp > 0. (Also the equation

x? + px + gxo = 0 having the root x = x3 can be considered.)

03.3. Let x, y and z be positive real numbers such that xyz = 1. Prove

that
(1+x)(1+y)(1+2) 22(1+<’/Z+ §/§+ {/f).

Solution: Put a = bx, b = cy and ¢ = az. The given inequality
then takes the form

() (02 (08 220 B+ 5+ )
:2(1+ a+b—i—c>
By the AM-GM inequality we have

<1+a)<1+lz)<1+2> :a+b+c+a+b—|—c+a+b+c_1

b a b c
a+b+c
>3(——) -1
B < Vabc )
S0 tbte 5
abc

zz(Hﬂgaf%‘:).
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Solution 2: Expanding the left side we obtain

xrytz+lelel>o({E+ i+ 35).
As {/% < %(y—k%—kl) etc., it suffices to prove that
Xhytzt it > ety tzri bl +2

which follows from a + % > 2.

03.4. Let a, b, c be positive real numbers. Prove that

2a 2b 2c a b c

< — — .
a2+bc+b2+ca+cz+ab - bc+ca+ab

Solution: First we prove that

az%:lbc = %(% + %)’

which is equivalent to 0 < b(a — ¢)? + c(a — b)?, and therefore
holds true. Now we turn to the inequality

1 1 _1/2a b ¢
< (22 2y =
b ¢~ 2 (bc ca ab)'
which by multiplying by 2abc is seen to be equivalent to 0 <

(a —b)? + (a — ¢)%. Hence we have proved that

2a 1/2a b c
T < ().
a2 + be _4(bc ca ab)
Analogously we have
2 1(@ i,
b2+ca — 4\ca ab bc
2c 1 (2c a b )

T (=22
c2+ab — 4\ab  bc ca

and it suffices to sum the above three inequalities.
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Solution 2: As a2 + be > 2a+v/be etc., it is sufficient to prove that
1 1 1 a b c

< L7 =
\/E+\/ﬁ+\/%_bc+ca+ab'

which can be obtained by “inserting” 1 + ; + 1 between the left
side and the right side.

03.5. A sequence (ay) is defined as follows: a; = V2, 4y = 2, and
41 = aya>_, for n > 2. Prove that for every n > 1 we have

(14a)(1+a) - (14a,) < 2+ V2)aa; - - -ay.

Solution: First we prove inductively that forn > 1, a,, = 227 We
have a; =22, a; = 22° and

A =22 (22T =020 2 =02
Since 1+ a; = 1 + v/2, we must prove, that
(14+a2)(1+az)---(1+a,) < 2apa3---ay.
The right-hand side is equal to
914204204 42772 22"—1
and the left-hand side

(1+22)(1+2%) - (14227
= 1422 402 02420 4 92y Ly 920422
= 142422423 4. 422
_ 22n71 N 1

The proof is complete.
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03.6. Let n > 2 and d > 1 be integers with d | n, and let x1,xz, ..., X,
be real numbers such that x1 + x, + - - - + x, = 0. Prove that there are
at least (Zj) choices of d indices 1 < iy < ip < --- < iz < n such that
Xi, +xi, + - +x;, > 0.

Solution: Put m = n/d and [n] = {1,2,...,n}, and consider all
partitions [n] = AyU A, U---UA,, of [n] into d-element subsets
Ai, 1 =1,2,...,m. The number of such partitions is denoted by t.
Clearly, there are exactly (;) d-element subsets of [n] each of which
occurs in the same number of partitions. Hence, every A C [n]
with |A| = d occurs in exactly s := tm/(]}) partitions. On the other
hand, every partition contains at least one d-element set A such
that ) ;c 4 x; > 0. Consequently, the total number of sets with this
property is at least t/s = (1) /m = 4(%) = ("_]).

03.7. Let X be a subset of {1,2,3,...,10000} with the following prop-
erty: Ifa, b€ X, a # b, then a-b ¢ X. What is the maximal number of
elements in X?

Answer: 9901.

Solution: If X = {100,101,102,...,9999,10000}, then for any two
selected a and b, a # b, a-b > 100-101 > 10000,s0a-b ¢ X. So X
may have 9901 elements.

Suppose that x; < x; < --- < x; are all elements of X that
are less than 100. If there are none of them, no more than 9901
numbers can be in the set X. Otherwise, if x; = 1 no other number
can be in the set X, so suppose x; > 1 and consider the pairs

200 — X1, (200 — X1> - X1
200 — X2, (200 — XQ> + X2

200 — Xk, (200 - Xk) * Xk

Clearlyx1 < xp < e < xp <100 < 200 — x < 200 — xpq <
<+ <200 —x2 < 200 —x; < 200 < (200 — x71) - x1 < (200 —
Xp) - xp < -++ < (200 — x¢) - x¢. So all numbers in these pairs are
different and greater than 100. So at most one from each pair is



48 Baltic Way

in the set X. Therefore, there are at least k numbers greater than
100 and 99 — k numbers less than 100 that are not in the set X,
together at least 99 numbers out of 10000 not being in the set X.

03.8. There are 2003 pieces of candy on a table. Two players alternately
make moves. A move consists of eating one candy or half of the candies
on the table (the “lesser half” if there is an odd number of candies); at
least one candy must be eaten at each move. The loser is the one who eats
the last candy. Which player — the first or the second — has a winning
strategy?

Answer: The second.

Solution: Let us prove inductively that for 2n pieces of candy
the first player has a winning strategy. For n = 1 it is obvious.
Suppose it is true for 2n pieces, and let’s consider 2n + 2 pieces. If
for 2n + 1 pieces the second is the winner, then the first eats 1 piece
and becomes the second in the game starting with 2n + 1 pieces. So
suppose that for 2n + 1 pieces the first is the winner. His winning
move for 2n + 1 is not eating 1 piece (according to the inductive
assumption). So his winning move is to eat n pieces, leaving the
second with n + 1 pieces, when the second must lose. But the first
can leave the second with n + 1 pieces from the starting position
with 2n + 2 pieces, eating n + 1 pieces; so 2n + 2 is a winning
position for the first.

Now if there are 2003 pieces of candy on the table, the first
must eat either 1 or 1001 candies, leaving an even number of
candies on the table. So the second player will be the first player in
a game with even number of candies and therefore has a winning
strategy.

In general, if there is an odd number N of candies, write
N = 2"r +1, where r is odd. Then the first player wins if m
is even, and the second player wins if m is odd: At each move,
the player must avoid leaving the other with an even number of
candies, so he must eat half of the candies. But this means that the
number of candies descend as 2"r +1,2" Yy +1,...,2r+1,r+1,
and eventually there is an even number of candies.
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03.9. It is known that n is a positive integer, n < 144. Ten questions
of type “Is n smaller than a?” are allowed. Answers are given with a
delay: The answer to the i'th question is given only after the (i 4+ 1)’st
question is asked, i = 1,2,...,9. The answer to the tenth question is
given immediately after it is asked. Find a strategy for identifying n.
Solution: Let the Fibonacci numbers be denoted Fy = 1, F; = 2,
F, = 3 etc. Then Fjp = 144. We will prove by induction on k that
using k questions subject to the conditions of the problem, it is
possible to determine any positive integer n < F. First, for k = 0
it is trivial, since without asking we know that n = 1. For k =1,
we simply ask if n is smaller than 2. For k = 2, we ask if n is
smaller than 3 and if # is smaller than 2; from the two answers we
can determine 7.

Now, in general, our first two questions will always be “Is n
smaller than F._; 4+ 1?” and “Is n smaller than F,_, + 1”. We then
receive the answer to the first question. As long as we receive
affirmative answers to the i — 1’st question, the i + 1’st question
will be “Is n smaller than F_;,q) + 1?7, If at any point, say
after asking the j’th question, we receive a negative answer to the
j — 1’st question, we then know that Fk_(j_l) +1<n< Fk_(j_z), SO
nis one of F_(; o) — F_(j_1) = F—; consecutive integers, and by
induction we may determine # using the remaining k — j questions.
Otherwise, we receive affirmative answers to all the questions, the
last being “Is n smaller than F;_; +1 = 2?”; so n = 1 in that case.

03.10. A lattice point in the plane is a point whose coordinates are both
integral. The centroid of four points (x;,y;), i = 1,2,3,4, is the point
(bt WAVt et 1 be the largest natural number with
the following property: There are n distinct lattice points in the plane
such that the centroid of any four of them is not a lattice point. Prove
that n = 12.

Solution: To prove n > 12, we have to show that there are 12
lattice points (x;,y;),i=1,2,...,12, such that no four determine
a lattice point centroid. This is guaranteed if we just choose the
points such that x; =0 (mod 4) fori =1,...,6, x;, =1 (mod 4)
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fori=17,...,12,y; = 0 (mod 4) fori = 1,2,3,10,11,12, y; = 1
(mod 4) fori=4,...,9.

Now let P, i =1,2,...,13, be lattice points. We have to show
that some four of them determine a lattice point centroid. First
observe that, by the Pigeonhole Principle, among any five of the
points we find two such that their x-coordinates as well as their
y-coordinates have the same parity. Consequently, among any
tive of the points there are two whose midpoint is a lattice point.
Iterated application of this observation implies that among the
13 points in question we find five disjoint pairs of points whose
midpoint is a lattice point. Among these five midpoints we again
find two, say M and M’, such that their midpoint C is a lattice
point. Finally, if M and M’ are the midpoints of P;P; and PP,
respectively, {i,j,k, £} C {1,2,...,13}, then C is the centroid of
P, P, Py, P;.

03.11. Is it possible to select 1000 points in a plane so that at least 6000
distances between two of them are equal?

Answer: Yes.

Solution: Let’s start with configuration of 4 points and 5 distances
equal to d, like in this figure:

d
o <T

Now take (a) and two copies of it obtainable by parallel shifts
along vectors @ and b, |d@| = |b| = d and Z(d@,b) = 60°. Vectors @
and b should be chosen so that no two vertices of («) and of the
two copies coincide. We get 3 -4 = 12 points and 3 -5+ 12 = 27
distances. Proceeding in the same way, we get gradually

3-12 = 36 points and 3 - 27 + 36 = 117 distances;

3-36 = 108 points and 3 - 117 + 108 = 459 distances;
3-108 = 324 points and 3 - 459 + 324 = 1701 distances;
3-324 = 972 points and 3 - 1701 + 972 = 6075 distances.
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03.12. Let ABCD be a square. Let M be an inner point on side BC and
N be an inner point on side CD with ZMAN = 45°. Prove that the
circumcentre of AMN lies on AC.

Solution: Draw a circle w through M, C, N; let it intersect AC
at O. We claim that O is the circumcentre of AMN.

Clearly ZMON = 180° — ZMCN = 90°. If the radius of w
is R, then OM = 2Rsin45° = Rv/2; similarly ON = R+/2. Hence
we get that OM = ON. Then the circle with centre O and radius
Rv/2 will pass through A, since ZMAN = %4MON.

B M C

03.13. Let ABCD be a rectangle and BC = 2 - AB. Let E be the midpoint
of BC and P an arbitrary inner point of AD. Let F and G be the feet of
perpendiculars drawn correspondingly from A to BP and from D to CP.
Prove that the points E, F, P, G are concyclic.

Solution: From rectangular triangle BAP we have BP - BF =
AB? = BE?. Therefore the circumference through F and P touch-
ing the line BC between B and C touches it at E. Analogously, the
circumference through P and G touching the line BC between B
and C touches it at E. But there is only one circumference touching
BC at E and passing through P.

B E C

F
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03.14. Let ABC be an arbitrary triangle and AMB, BNC, CKA regular
triangles outward of ABC. Through the midpoint of MN a perpendicular
to AC is constructed; similarly through the midpoints of NK resp. KM
perpendiculars to AB resp. BC are constructed. Prove that these three
perpendiculars intersect at the same point.

Solution: Let O be the midpoint of MN, and let E and F be
the midpoints of AB and BC, respectively. As triangle MBC
transforms into triangle ABN when rotated 60° around B we
get MC = AN (it is also a well-known fact). Considering now the
quadrangles AMBN and CMBN we get OE = OF (from Eiler’s
formula a? + b + ¢ + d?> = €* + f2 + 4 - PQ? or otherwise). As
EF || AC we get from this that the perpendicular to AC through O
passes through the circumcentre of EFG, as it is the perpendicular
bisector of EF. The same holds for the other two perpendiculars.

First solution Second solution

Solution 2: Let us denote the midpoints of the segments MN,
NK, KM by By, C1, Ay, respectively. It is easy to see that triangle
A1B1C; is homothetic to triangle NKM via the homothety centered
at the intersection of the medians of triangle NMK and dilation —3.
The perpendiculars through M, N, K to AB, BC, CA, respectively,
are also the perpendicular bisectors of these sides, so they intersect
in the circumcentre of triangle ABC. The desired result follows
now from the homothety, and we find that that the common point
of intersection is the circumcentre of the image of triangle ABC
under the homothety; that is, the circumcentre of the triangle with
vertices the midpoints of the sides AB, BC, CA.
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03.15. Let P be the intersection point of the diagonals AC and BD in
a cyclic quadrilateral. A circle through P touches the side CD in the
midpoint M of this side and intersects the segments BD and AC in the
points Q and R, respectively. Let S be a point on the segment BD such
that BS = DQ. The parallel to AB through S intersects AC at T. Prove
that AT = RC.

Solution: With reference to the figure below we have CR - CP =

DQ - DP = CM? = DM?, which is equivalent to RC = 2ZPP we

also have gg = gg = Sg, so AT = AP D Q. Since ABCD is cyclic
the result now comes from the fact that DP-BP = AP - CP (due

to a well-known theorem).

AT TN\0p
N

us
4>

03.16. Find all pairs of positive integers (a,b) such that a — b is a prime
and ab is a perfect square.

Answer: Pairs (a,b) = ((pTH)Z, (’%1)2), where p is a prime greater
than 2.

Solution: Let p be a prime such that a — b = p and let ab = k2.
Insert a = b + p in the equation ab = k?. Then

C

2
2 _ _ Py P
K=0+pb=0+5) -7

which is equivalent to

p? = (2b+ p)* — 4k* = (2b+ p + 2k)(2b + p — 2K).
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Since 2b 4 p + 2k > 2b+ p — 2k and p is a prime, we conclude
2b + p + 2k = p? and 2b + p — 2k = 1. By adding these equations
we get 2b+p = # and then b = (’%1)2, soa =b+p =
(pTH)Z. By checking we conclude that all the solutions are (a,b) =
((pTH)Z, (’%1)2) with p a prime greater than 2.

Solution 2: Let p be a prime such that a — b = p and let ab = k2.
We have (b + p)b = k?, so gcd(b, b+ p) = ged(b, p) is equal either
to 1 or p. If gcd(b,b + p) = p, let b = byp. Then p?by (b +1) = k2,
b1 (b1 + 1) = m?, but this equation has no solutions.

Hence ged (b, b+ p) =1, and

b= u? b+p=71
so that p = v> — u? = (v+ u)(v — u). This in turn implies that
v—u =1and v+ u = p, from which we finally obtain a2 = (pTH)Z,

b= (’%1)2, where p must be an odd prime.

03.17. All the positive divisors of a positive integer n are stored into an
array in increasing order. Mary has to write a program which decides
for an arbitrarily chosen divisor d > 1 whether it is a prime. Let n
have k divisors not greater than d. Mary claims that it suffices to check
divisibility of d by the first [k/2| divisors of n: If a divisor of d greater
than 1 is found among them, then d is composite, otherwise d is prime.
Is Mary right?
Answer: Yes, Mary is right.
Solution: Let d > 1 be a divisor of n. Suppose Mary’s program
outputs “composite” for d. That means it has found a divisor of 4
greater than 1. Since d > 1, the array contains at least 2 divisors
of d, namely 1 and d. Thus Mary’s program does not check
divisibility of d by d (the first half gets complete before reaching d)
which means that the divisor found lays strictly between 1 and 4.
Hence d is composite indeed.

Suppose now d being composite. Let p be its smallest prime
divisor; then % > p or, equivalently, d > p?. As p is a divi-
sor of n, it occurs in the array. Let ay,...,a; all divisors of n
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smaller than p. Then pay, ..., pay are less than p? and hence less
than d. As ay,...,a, are all relatively prime with p, all the num-
bers pay, ..., pay divide n. The numbers ay, ..., ax, pay, ..., pai are
pairwise different by construction. Thus there are at least 2k + 1
divisors of n not greater than d. So Mary’s program checks divisi-
bility of d by at least k + 1 smallest divisors of 1, among which it
finds p, and outputs “composite”.

03.18. Every integer is coloured with exactly one of the colours BLUE,
GREEN, RED, YELLOW. Can this be done in such a way that if a,b,c,d
are not all 0 and have the same colour, then 3a — 2b # 2¢ — 3d?
Answer: Yes.

Solution: A colouring with the required property can be defined
as follows. For a non-zero integer k let k* be the integer uniquely
defined by k = 5" - k*, where m is a nonnegative integer and
51 k*. We also define 0* = 0. Two non-zero integers ki, k, receive
the same colour if and only if kj = k5 (mod 5); we assign 0 any
colour.

Assume 4, b, ¢, d has the same colour and that 3a —2b = 2¢ — 34,
which we rewrite as 3a — 2b — 2c 4- 3d = 0. Dividing both sides by
the largest power of 5 which simultaneously divides a, b, c, d (this
makes sense since not all of 4, b, ¢, d are 0), we obtain

3.54.4*—2.5B.p* —2.5C.c*+3.5P .4 =,

where A, B, C, D are nonnegative integers at least one of which is
equal to 0. The above equality implies

354 a* 458 . p* +5°.c* +50.4*) =0  (mod 5).

Assume a,b,c,d are all non-zero. Then a* = b* =c¢* =d* £#0
(mod 5). This implies
54458 4+ 5¢ 450 =0 (mod 5) (03.15)

which is impossible since at least one of the numbers A, B,C, D
is equal to 0. If one or more of 4,b, ¢, d are 0, we simply omit the
corresponding terms from (03.15), and the same conclusion holds.
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03.19. Let a and b be positive integers. Prove that if a® + b> is the square
of an integer, then a + b is not a product of two different prime numbers.
Solution: Suppose a + b = pq, where p # q are two prime num-
bers. We may assume that p # 3. Since

a® 4+ b = (a+0b)(a® — ab+b?)

is a square, the number % — ab + b* = (a + b)? — 3ab must be
divisible by p and q, whence 3ab must be divisible by p and 4. But
p#3,soplaorp|b;butp|a+b,sop|aandp |b. Write
a = pk, b = p{ for some integers k, /. Notice that 4 = 3, since
otherwise, repeating the above argument, we would have g | 4,
g |banda+b > pg). So we have

3p=a+b=pk+)

and we conclude that a = p, b = 2p ora = 2p, b = p. Then
a® + b = 9p? is obviously not a square, a contradiction.

03.20. Let n be a positive integer such that the sum of all the positive
divisors of n (except n) plus the number of these divisors is equal to n.
Prove that n = 2m? for some integer m.

Solution: Let t; < t, < --- < t; be all positive odd divisors of n,
and let 2¥ be the maximal power of 2 that divides n. Then the full
list of divisors of 7 is the following:

H, oo b, 20, .0 2t o, 25, L 2
Hence,
2n =2 1)ty + a4+ 1)+ (k+1)s— 1.

The right-hand side can be even only if both k and s are odd. In
this case the number 7/2F has an odd number of divisors and
therefore it is equal to a perfect square 2. Writing k = 2a + 1, we
have n = 2572 = 2(277)2.
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04.1. Given a sequence ay,az,as, . . . of non-negative real numbers satis-
fying the conditions

(1) an +ax, > 3n

@) ay1 40 <2/a @ F 1)

forall indicesn =1,2.. ..

(a) Prove that the inequality a, > n holds for every n € IN.
(b) Give an example of such a sequence.

Solution: (a) Note that the inequality

Ap+1+ 1

— Y > /1N

holds, which together with the second condition of the problem

gives
Aye1 -1 < y/ap-(n+1).

This inequality simplifies to

a n+1
n+1< +'

ay n

Now, using the last inequality for the index n replaced by n,n +
1,...,2n — 1 and multiplying the results, we obtain

a 2n

“on <9

an n
or 2a, > az,. Taking into account the first condition of the problem,
we have

3a, =a, +2a, > a, +ay, > 3n

which implies a4, > n. (b) The sequence defined by a, = n +1
satisfies all the conditions of the problem.
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04.2. Let P(x) be a polynomial with non-negative coefficients. Prove
that if P(L)P(x) > 1 for x = 1, then the same inequality holds for each
positive x.

Solution: For x > 0 we have P(x) > 0 (because at least one coeffi-
cient is non-zero). From the given condition we have (P(1))? > 1.
Further, let’s denote P(x) = a,x" +a, 1x" ' +--- +a. Then

P(x)P(Y) = (anx"+ - +ag)(apx™" + -+ ap)
n i—1

—Za +EZ a;i_ja;)(x' +x77)

i=1j=0

> Zu —|—22ua]

i>j

— (PP > 1.

04.3. Let p,q,r be positive real numbers and n € IN. Show that if
pqr =1, then

1 1 1
+ + <L
pr+qt+1 gt +r+1 4 pt+1
Solution: The key idea is to deal with the case n = 3. Puta = p"/3,
b=q"3 and c = /3, s0 abc = (pqr)"’® = 1 and

1 1 1 _ 1 1 1
prgT+1 + qT+ri+1 + M+pt+1 7 a3+b3+1 T Fror T vt

Now

1 _ 1 _ 1 < 1
aB3+b3+1 — (a+b)(a2—ab+b?2)+1 — (a+b)((a—b)2+ab)+1 — (a+b)ab+1"

Since ab = ¢~ 1,

1 < 1 _ c
aB3+b34+1 — (a+b)ab+1 — a+b+c”
Similarly we obtain

1 b

1
S+a3+1 =< a+b+c*

a
PIoT < abe and
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Hence

1 1 1 c a b _
a3+b3+1 + b3+c3+1 + A+ad+1 = atbre T a+b+c + a+b+c L,

which was to be shown.

04.4. Let x1,xy,...,xy, be real numbers with arithmetic mean X. Prove
that there is a positive integer K such that the arithmetic mean of each
of the lists {x1,x2,...,xx}, {x2,%3,...,xk}, ..., {xxk—1,xx}, {xK} is
not greater than X.

Solution: Suppose the conclusion is false. This means that for
every K € {1,2,...,n}, there exists a k < K such that the arithmetic
mean of Xy, Xx41,. .., Xk exceeds X. We now define a decreasing
sequence by > ay; >a; —1="by > ap; > --- as follows: Put b; = n,
and for each i, let a; be the largest largest k < b; such that the
arithmetic mean of x,,, ..., x5, exceeds X; then put b; 11 = a; — 1
and repeat. Clearly for some m, a,, = 1. Now, by construction,
each of the sets {x,,,, ..., xp, }, {Xa,, 1/ Xp,  }rooos {Xays oo X0, }
has arithmetic mean strictly greater than X, but then the union
{x1,x2,...,x,} of these sets has arithmetic mean strictly greater
than X; a contradiction.

04.5. Determine the range of the function f defined for integers k by
fk) = (k)3 + (2k)s + (3k)7 — 6K,

where (k)a,+1 denotes the multiple of 2n + 1 closest to k.

Solution: For odd n we have

n—1
2

n—1

(k)n:k+ 5 ]n,

.

where [m],, denotes the principal remainder of m modulo n. Hence
we get

f(k) =6 —[k+1]3 — [2k + 2]5 — [3k + 3].
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The condition that the principal remainders take the values 4, b
and c, respectively, may be written

k+1=a (mod 3),
2k+2=b (mod5),
3k+3=c (mod7)

or
k=a—-1 (mod 3),
k=-2b—1 (mod}5),
=—-2c—1 (mod?7).

By the Chinese Remainder Theorem, these congruences have a
solution for any set of a,b, c. Hence f takes all the integer values
between 6 —2—4—-6 = —-6and 6 —0—0— 0 = 6. (In fact, this
proof also shows that f is periodic with period 3-5-7 = 105.)
04.6. A positive integer is written on each of the six faces of a cube. For
each vertex of the cube we compute the product of the numbers on the
three adjacent faces. The sum of these products is 1001. What is the sum
of the six numbers on the faces?

Solution: Let the numbers on the faces be ay, 4>, by, by, c1, 3,
placed so that a; and a, are on opposite faces etc. Then the sum of
the eight products is equal to

(a1 + llz)(bl + bz)(cl + Cz) =1001 =7-11-13.

Hence the sum of the numbers on the facesis a; +a» + b1 + br +
c1+c=7+11+13 = 31.

04.7. Find all sets X consisting of at least two positive integers such that
for every pair m,n € X, where n > m, there exists k € X such that
n = mk>.

Answer: The sets {m, m>}, where m > 1.

Solution: Let X be a set satisfying the condition of the problem
and let n > m be the two smallest elements in the set X. There has
to exist a k € X so that n = mk?, but as m < k < n, either k = n or
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k = m. The first case gives m = n = 1, a contradiction; the second
case implies n = m® with m > 1.

Suppose there exists a third smallest element g € X. Then
there also exists ko € X, such that g = mk%. We have g > ko > m,
but kg = m would imply g = n, thus kg = n = m3 and q = m’.
Now for g and n there has to exist k; € X such that g = nk?, which
gives k; = m?. Since m?> & X, we have a contradiction.

Thus we see that the only possible sets are those of the form
{m,m3} with m > 1, and these are easily seen to satisfy the

conditions of the problem.

04.8. Let f be a non-constant polynomial with integer coefficients. Prove
that there is an integer n such that f(n) has at least 2004 distinct prime
factors.

Solution: Suppose the contrary. Choose an integer ny so that
f(np) has the highest number of prime factors. By translating the
polynomial we may assume 1y = 0. Setting k = f(0), we have
f(wk?) = k (mod k?), or f(wk?) = ak®> +k = (ak + 1)k. Since
gcd(ak +1,k) = 1 and k alone achieves the highest number of
prime factors of f, we must have ak + 1 = £1. This cannot happen
for every w since f is non-constant, so we have a contradiction.

04.9. A set S of n — 1 natural numbers is given (n > 3). There exists at
least two elements in this set whose difference is not divisible by n. Prove
that it is possible to choose a non-empty subset of S so that the sum of its
elements is divisible by n.

Solution: Suppose to the contrary that there exists a set X =
{ay,ay,...,a,_1} violating the statement of the problem, and let
ay_p # ay—1 (mod n). Denote S; = ay +ay+---+a;,i=1,...,n—
1. The conditions of the problem imply that all the numbers S;
must give different remainders when divided by n. Indeed, if for
some j < k we had S; = S; (mod n), thenaj 1 +aj 2+ +a =
Sk —S; = 0 (mod n). Consider now the sum S =8, 3+a, 1.
We see that S’ can not be congruent to any of the sums S; (for
i # n — 2 the above argument works and for i = n — 2 we use the
assumption a,_» # a,_1 (mod n)). Thus we have n sums that give
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pairwise different remainders when divided by n, consequently
one of them has to give the remainder 0, a contradiction.

04.10. Is there an infinite sequence of prime numbers pi, pa, ... such
that |py+1 — 2pn| = 1 for each n € IN?

Answer: No, there is no such sequence.

Solution: Suppose the contrary. Clearly p3 > 3. There are two
possibilities: If p3 = 1 (mod 3) then necessarily ps = 2ps — 1
(otherwise py = 0 (mod 3)), so p4 = 1 (mod 3). Analogously
ps = 2ps — 1, pe = 2p5 — 1 etc. By an easy induction we have

pus1—1=2"2(p3—1), n=3,4,5....
If we set n = p3 +1 we have p,, 1 — 1 = 2/3~1(p3 — 1), from which
Pprr2=1+1-(p3—=1) =ps =0 (mod p3),

a contradiction. The case p3 =2 (mod 3) is treated analogously.

04.11. An m x n table is given, in each cell of which a number +1 or —1
is written. It is known that initially exactly one —1 is in the table, all
the other numbers being +1. During a move, it is allowed to choose any
cell containing —1, replace this —1 by 0, and simultaneously multiply
all the numbers in the neighboring cells by —1 (we say that two cells are
neighboring if they have a common side). Find all (m, n) for which using
such moves one can obtain the table containing zeroes only, regardless of
the cell in which the initial —1 stands.

Answer: Those (m, n) for which at least one of m, n is odd.
Solution: Let us erase a unit segment which is the common side of
any two cells in which two zeroes appear. If the final table consists
of zeroes only, all the unit segments (except those which belong to
the boundary of the table) are erased. We must erase a total of

mn—1)4+n(m—1)=2mn—m—n

such unit segments.
On the other hand, in order to obtain 0 in a cell with initial +1
one must first obtain —1 in this cell, that is, the sign of the number
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in this cell must change an odd number of times (namely, 1 or 3).
Hence, any cell with —1 (except the initial one) has an odd number
of neighboring zeroes. So, any time we replace —1 by 0 we erase
an odd number of unit segments. That is, the total number of unit
segments is congruent modulo 2 to the initial number of +1’s in
the table. Therefore 2mn —m —n = mn —1 (mod 2), implying
that (m —1)(n —1) =0 (mod 2), so at least one of m, n is odd.

It remains to show that if, for example, n is odd, we can obtain
a zero table. First, if —1 is in the i"th row, we may easily make
the i"th row contain only zeroes, while its one or two neighboring
rows contain only —1’s. Next, in any row containing only —1’s,
we first change the —1 in the odd-numbered columns (that is,
the columns 1,3,...,n) to zeroes, resulting in a row consisting
of alternating 0 and —1 (since the —1’s in the even-numbered
columns have been changed two times), and we then easily obtain
an entire row of zeroes. The effect of this on the next neighboring
row is to create a new row of —1’s, while the original row is clearly
unchanged. In this way we finally obtain a zero table.

04.12. There are 2n different numbers in a row. By one move we can

interchange any two numbers or interchange any three numbers cyclically

(choose a, b, c and place a instead of b, b instead of c and c instead of a).

What is the minimal number of moves that is always sufficient to arrange

the numbers in increasing order?

Solution: If a number y occupies the place where x should be

at the end, we draw an arrow x — y. Clearly at the beginning

all numbers are arranged in several cycles: Loops e O, binary
(]

cycles @ = o and “long” cycles o< \fo (at least three numbers).

X

Our aim is to obtain 27 loops. *

Clearly each binary cycle can be rearranged into two loops by
one move. If there is a long cycle with a fragment --- —a — b —
¢ — - - -, interchange a, b, c cyclically so that at least two loops, a0,
b O, appear. By each of these moves, the number of loops increase

by 2, so at most n moves are needed.
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On the other hand, by checking all possible ways the two or
three numbers can be distributed among disjoint cycles, it is easy
to see that each of the allowed moves increases the number of
disjoint cycles by at most two. Hence if the initial situation is one
single loop, at least n moves are needed.

04.13. The 25 member states of the European Union set up a committee
with the following rules: (1) the committee should meet daily; (2) at each
meeting, at least one member state should be represented; (3) at any two
different meetings, a different set of member states should be represented;
and (4) at the n'th meeting, for every k < n, the set of states represented
should include at least one state that was represented at the k'th meeting.
For how many days can the committee have its meetings?

Answer: At most 224 = 16777216 days.

Solution: If one member is always represented, rules 2 and 4 will
be fulfilled. There are 22* different subsets of the remaining 24
members, so there can be at least 22* meetings. Rule 3 forbids
complementary sets at two different meetings, so the maximal
number of meetings cannot exceed 3 - 2% = 224, So the maximal
number of meetings for the committee is exactly 224 = 16777216.

04.14. We say that a pile is a set of four or more nuts. Two persons play
the following game. They start with one pile of n > 4 nuts. During a
move a player takes one of the piles that they have and split it into two
non-empty subsets (these sets are not necessarily piles, they can contain
an arbitrary number of nuts). If the player cannot move, he loses. For
which values of n does the first player have a winning strategy?
Answer: The first player has a winning strategy whenn =0,1,2
(mod 4); otherwise the second player has a winning strategy.
Solution: Let n = 4k + 7, where 0 < r < 3. We will prove the
above answer by induction on k; clearly it holds for k = 1. We are
also going to need the following useful fact:

If at some point there are exactly two piles with 4s + 1
and 4t + 1 nuts, s +¢ < k, then the second player to
move from that point wins.
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This holds vacuously when k = 1.

Now assume that we know the answer when the starting pile
consists of at most 4k — 1 nuts, and that the useful fact holds for
s+t < k. We will prove the answer is correct for 4k, 4k + 1, 4k 4- 2
and 4k + 3, and that the useful fact holds for s +t < k + 1. For the
sake of bookkeeping, we will refer to the first player as A and the
second player as B.

If the pile consists of 4k, 4k + 1 or 4k + 2 nuts, A simply makes
one pile consisting of 4k — 1 nuts, and another consisting of 1, 2
or 3 nuts, respectively. This makes A the second player in a game
starting with 4k —1 = 3 (mod 4) nuts, so A wins.

Now assume the pile contains 4k + 3 nuts. A can split the
pile in two ways: Either as (4p + 1,49 +2) or (4p,4q9 + 3). In the
former case, if either p or g is 0, B wins by the above paragraph.
Otherwise, B removes one nut from the 44 + 2 pile, making B the
second player in a game where we may apply the useful fact (since
p+q = k), so B wins. If A splits the original pile as (4p,4q + 3),
B removes one nut from the 4p pile, so the situation is two piles
with 4(p — 1) 4+ 3 and 44 + 3 nuts. Then B can use the winning
strategy for the second player just described on each pile seperately,
ultimately making B the winner.

It remains to prove the useful fact when s +t = k + 1. Due to
symmetry, there are two possibilities for the first move: Assume
the first player moves (4s + 1,4t +1) — (4s+1,4p,4q+ 1). The
second player then splits the middle pile into (4p —1,1), so the
situation is (4s + 1,49 4+ 1,4p — 1). Since the second player has a
winning strategy both when the initial situtation is (4s + 1,49 + 1)
and when it is 4p — 1, he wins (this also holds when p = 1).

Now assume the first player makes the move (4s + 1,4t +1) —
(4s+1,4p+ 2,49+ 3). If p = 0, the second player splits the third
pile as 49 + 3 = (49 + 1) + 2 and wins by the useful fact. If p > 0,
the second player splits the second pileas 4p+2 = (4p+1) +1,
and wins because he wins in each of the situations (4s +1,4p + 1)
and 4q + 3.
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04.15. A circle is divided into 13 segments, numbered consecutively from
1 to 13. Five fleas called A, B, C, D and E are sitting in the segments
1,2,3,4 and 5. A flea is allowed to jump to an empty segment five
positions away in either direction around the circle. Only one flea jumps
at the same time, and two fleas cannot be in the same segment. After
some jumps, the fleas are back in the segments 1,2,3,4,5, but possibly in
some other order than they started. Which orders are possible?
Solution: Write the numbers from 1 to 13 in the order 1, 6, 11, 3,
8,13,5,10,2,7,12, 4, 9. Then each time a flea jumps it moves
between two adjacent numbers or between the first and the last
number in this row. Since a flea can never move past another flea,
the possible permutations are

or equivalently

Nmw I » -
mwmw P> Nw
WO P> Nmoa
OU»>0Om@mN
>Omw e
[@N==N--Rwis=
O»>0OmmN
mwEgP»>Nw
>Omw e
WO P> Nma

that is, exactly the cyclic permutations of the original order.

04.16. Through a point P exterior to a given circle pass a secant and a
tangent to the circle. The secant intersects the circle at A and B, and the
tangent touches the circle at C on the same side of the diameter thorugh
P as A and B. The projection of C on the diameter is Q. Prove that QC
bisects Z AQB.

Solution: Denoting the centre of the circle by O, we have OQ -
OP = OA? = OB?. Hence AOAQ ~ AOPA and AOBQ ~
AOPB. Since AAOB is isosceles, we have ZOAP + ZOBP = 180°,
and therefore

ZAQP + /BQP = ZAOP + ZOAQ + /BOP + ZOBQ
— /AOP + LOPA + /BOP + /OPB
= 180° — ZOAP +180° — ZOBP
= 180°.

Thus QC, being perpendicular to QP, bisects ZAQB.
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04.17. Consider a rectangle with side lengths 3 and 4, and pick an
arbitrary inner point on each side. Let x, y, z and u denote the side
lengths of the quadrilateral spanned by these points. Prove that 25 <
X2+ y? + 22+ u? < 50.

Solution: Let g, b, c and d be the distances of the chosen points
from the midpoints of the sides of the rectangle (with 2 and c on
the sides of length 3). Then

P+ +r =3+ + G -a)+ G+ + (3 —0)?
+(2+b)2+(2-b)2+2+d)?*+(2-d)?
=4-(3)24+4-2242(a* +V* +* +d?)
=25 +2(a* + b* + ¢ +d?).

Since 0 < a?,¢% < (3/2)2, 0 < b?,d? < 22, the desired inequalities

follow.

04.18. A ray emanating from the vertex A of the triangle ABC intersects

the side BC at X and the circumcircle of ABC at Y. Prove that - +
1 4

XY = BC-

Solution: From the GM-HM inequality we have

1 1 2
—S Tt oo 2 Ye—
AX XY = VAX-XY

As BC and AY are chords intersecting at X we have AX - XY =
BX - XC. Therefore (04.16) transforms into

(04.16)

1 1 2
—_—_— > — 04.17
AX XY — /BX-XC ( )

We also have

BX+ XC BC
VBX - XC< ———— = —,
- 2 2

so from (04.17) the result follows.
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04.19. D is the midpoint of the side BC of the given triangle ABC. M
is a point on the side BC such that ZBAM = ZDAC. L is the second
intersection point of the circumcircle of the triangle CAM with the side
AB. K is the second intersection point of the circumcircle of the triangle
BAM with the side AC. Prove that KL || BC.

Solution: It is sufficient to prove that CK : LB = AC : AB.

The triangles ABC and MKC are similar beacuse they have
common angle C and ZCMK = 180° — ZBMK = ZKAB (the
latter equality is due to the observation that Z/BMK and ZKAB
are the opposite angles in the insecribed quadrilateral AKMB).

By analogous reasoning the triangles ABC and MBL are similar.
Therefore the triangles MKC and MBL are also similar and we
have

CK KM ARSAEEM  sinKAM
LB BM  AMsnMAB — gin MAB

sin MBA
sinDAB _ BPsfbA  4C

~ sinDAC ~ CDRsinCDA — AB’

The second equality is due to the sinus theorem for triangles AKM
and ABM; the third is due to the equality ZAKM = 180° — ZMBA
in the inscribed quadrilateral AKMB; the fourth is due to the
definition of the point M; and the fifth is due to the sinus theorem
for triangles ACD and ABD.

04.20. Three circular arcs wq, wy, w3 with common endpoints A and B
are on the same side of the line AB; wy lies between wq and w3. Two rays
emanating from B intersect these arcs at My, Mp, M3 and K, K>, K3,
respectively. Prove that %%i = %%

Solution: From inscribed angles we have ZAKiB = ZAM;B
and ZAK,B = ZAM;,B. From this it follows that AAK;Kp, ~

ANAMiM;, so

KiK3 AK>

MM, AM;’
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Similarly AAK;Kz ~ AAM;Ms3, so

KKy AK,
MM~ AM;’

KiK, . KoKj

M, = Moy from which the desired

From these equations we get
property follows.

K3
w3
M3
Ml‘
A\\\\\ - ///,/’;'B
RSSCEEs

Baltic Way 2005

05.1. Let ag be a positive integer. Define the sequence a,, n > 0, as
follows: If

j .
a, =) _ 10’
i=0
where c; are integers with 0 < ¢; <9, then

A1 = 2005 42005 4.4 C]2_005.
Is it possible to choose ag so that all the terms in the sequence are distinct?
Answer: No, the sequence must contain two equal terms.
Solution: It is clear that there exists a smallest positive integer k
such that

10 > (k+1) - 9%°%.



70 Baltic Way

We will show that there exists a positive integer N such that a,
consists of less than k + 1 decimal digits for all # > N. Let 4; be a
positive integer which consists of exactly j + 1 digits, that is,

100 < a; < 107+
We need to prove two statements:

e 1,11 has less than k + 1 digits if j < k; and
® (; >€li+1 lf]Zk.

To prove the first statement, notice that
a1 < (j+1)-92% < (k+1)-92% < 10F

and hence 4;;1 consists of less than k + 1 digits. To prove the
second statement, notice that a; consists of j + 1 digits, none of
which exceeds 9. Hence a;11 < (j+ 1) - 92°% and because j > k,
we get a; > 10/ > (G+1) 92005 > 4.4, which proves the second
statement. It is now easy to derive the result from this statement.
Assume that gy consists of k 4+ 1 or more digits (otherwise we
are done, because then it follows inductively that all terms of the
sequence consist of less than k + 1 digits, by the first statement).
Then the sequence starts with a strictly decreasing segment ag >
a; > ap > --- by the second statement, so for some index N the
number ay has less than k 4 1 digits. Then, by the first statement,
each number a4, with n > N consists of at most k digits. By the
Pigeonhole Principle, there are two different indices n,m > N such
that a, = a,,.

05.2. Let a, B and 7y be three angles with 0 < wa, B,y < 90° and
sina + sin B + siny = 1. Show that

tan? a + tan® B+ tan? v > g

Solution: Since tan?x = 1/ cos? x — 1, the inequality to be proved
is equivalent to

1 n 1 n 1 >§
cos?a  cos? B cos?y —

g
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The AM-HM inequality implies

3 < cos? a + cos? B + cos? 7y
1 1 1 -
cos? + cos? B + cos? 7y 3

3 — (sin® & + sin® B + sin® )

3
B (sintx+sin/3+sin’y)2

<
- 3

Ol =

and the result follows.
05.3. Consider the sequence ajy defined by a1 =1, a; = %,

1
= - k> 1.
Oa = B + a1 + Tarare, for k >
Prove that
1 1 1
+— et < 4.
apaz  dxdag  asds a98a100
Solution: Note that
1 2 2
<

- ’
Ax+2 Alg+1 Ag+19k42

because this inequality is equivalent to the inequality

1
Agqn > ax + Eﬂkﬂ/

which is evident for the given sequence. Now we have
1 1 1 1
+ + e
apaz  axa4  a3ds 98100
2 2 2 2

aiaz  dxasz  dxasz  A3l4

71
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05.4. Find three different polynomials P(x) with real coefficients such
that P(x*> 4+ 1) = P(x)? + 1 for all real x.

Answer: For example, P(x) = x, P(x) = x>+ 1 and P(x) =
xt 4+ 2x2 + 2.

Solution: Let Q(x) = x2+ 1. Then the equation that P must
satisfy can be written P(Q(x)) = Q(P(x)), and it is clear that this
will be satisfied for P(x) = x, P(x) = Q(x) and P(x) = Q(Q(x)).

Solution 2: For all reals x we have P(x)>2 +1 = P(x>+1) =
P(—x)?+1 and consequently, (P(x) + P(—x))(P(x) — P(—x)) = 0.
Now one of the three cases holds:

(a) If both P(x) 4+ P(—x) and P(x) — P(—x) are not identically
0, then they are non-constant polynomials and have a finite
numbers of roots, so this case cannot hold.

(b) If P(x) + P(—x) is identically O then obviously, P(0) = 0.
Consider the infinite sequence of integers ap = 0 and a,,11 =
a% 4+ 1. By induction it is easy to see that P(a,) = a, for all
non-negative integers n. Also, Q(x) = x has that property,
so P(x) — Q(x) is a polynomial with infinitely many roots,
whence P(x) = x.

(c) If P(x) — P(—x) is identically 0 then

P(x) = x®" 4+ b, 1x*" 2 4 -+ byx® + by,

for some integer n since P(x) is even and it is easy to see that
the coefficient of x?* must be 1. Putting n = 1 and n = 2 yield
the solutions P(x) = x> + 1 and P(x) = x* +2x% + 2.

Remark: For n = 3 there is no solution, whereas for n = 4 there is
the unique solution P(x) = x% + 6x% + 8x* 4 8x% + 5.

05.5. Let a, b, c be positive real numbers with abc = 1. Prove that

a n b n C
az2+2 b24+2 2427
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Solution: For any positive real x we have x2 +1 > 2x. Hence

a . b n c a . b . C
a24+2  b2+2 242~ 2a+1 2b+1 2c+1
1 1 1

=ox1/a Tas1/p T2xije R

R <1 is equivalent to

@+3) 2+ + @+ 2+ +2+2)2+3)
< (2+3)2+3)(2+7)

andto4 < L+ 14 .L4 1 Byabc =1 and by the AM-GM
inequality

1 1 1 3/ 1 \2
ab e e 23 () =3
the last inequality follows. Equality appears exactly whena = b =
c=1

05.6. Let K and N be positive integers with 1 < K < N. A deck of N
different playing cards is shuffled by repeating the operation of reversing
the order of the K topmost cards and moving these to the bottom of the
deck. Prove that the deck will be back in its initial order after a number
of operations not greater than 4 - N* / K2.

Solution: Let N = g-K+7r, 0 < r < K, and let us number the
cards 1,2,..., N, starting from the one at the bottom of the deck.
First we find out how the cards 1,2, ... K are moving in the deck.

If i <r then the card i is moving along the cycle

i—K+i—2K+i— -+ —>gK+i—(r+1—i)—
K+(r+1—i)— - —gK+(r+1—1),

because N— K < gK+i< Nand N—K < gK+ (r+1—1i) <N.
The length of this cycle is 29 + 2. In the special case of i =7 +i—1,
it actually consists of two smaller cycles of length g + 1.
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If r < i < K then the card i is moving along the cycle

i—-K+i—2K+i— -+ —(g—1)K+i—
K+r+1—i—K+(K+r+1—i)—
2K+ (K+r+1—i) > - = (g—1)K+ (K+r+1—1),

because N - K< (—1)K+i<Nand N-K< (g—1)K+ (K+
r+1 —1i) < N. The length of this cycle is 27. In the special case
of i = K+r+1—i, it actually consists of two smaller cycles of
length g.

Since these cycles cover all the numbers 1, ..., N, we can say
that every card returns to its initial position after either 29 + 2 or
2g operations. Therefore, all the cards are simultaneously at their
initial position after at most lem(2g +2,2q) = 2lem(g+1,9) =
2q(q + 1) operations. Finally,

2
2q(q+1) < (29)* = 44> < 4(§)",

which concludes the proof.

05.7. A rectangular array has n rows and six columns, where n > 2.
In each cell there is written either 0 or 1. All rows in the array are
different from each other. For each pair of rows (x1,X2,...,X¢) and
(y1,Y2,---,Ye), the row (x1y1, X2Y2, . - ., X6Ye) can also be found in the
array. Prove that there is a column in which at least half of the entries
are zeroes.

Solution: Clearly there must be rows with some zeroes. Consider
the case when there is a row with just one zero; we can assume
itis (0,1,1,1,1,1). Then for each row (1, xp, X3, X4, X5, X¢) there is
also a row (0, x2, x3, X4, X5, X6 ); the conclusion follows. Consider
the case when there is a row with just two zeroes; we can assume
itis (0,0,1,1,1,1). Let n;; be the number of rows with first two
elements 7,j. As in the first case nog > n11. Let ng; > nyp; the
other subcase is analogous. Now there are ngg + 101 zeroes in the
first column and 719 + #1111 ones in the first column; the conclusion
follows. Consider now the case when each row contains at least
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three zeroes (except (1,1,1,1,1,1), if such a row exists). Let us
prove that it is impossible that each such row contains exactly three
zeroes. Assume the opposite. As n > 2 there are at least two rows
with zeroes; they are different, so their product contains at least
four zeroes, a contradiction. So there are more then 3(n — 1) zeroes
in the array; so in some column there are more than (n —1)/2
zeroes; so there are at least nn/2 zeroes.

05.8. Consider a grid of 25 x 25 unit squares. Draw with a red pen
contours of squares of any size on the grid. What is the minimal number
of squares we must draw in order to colour all the lines of the grid?
Answer: 48 squares.

Solution: Consider a diagonal of the square grid. For any grid
vertex A on this diagonal denote by C the farthest endpoint of this
diagonal. Let the square with the diagonal AC be red. Thus, we
have defined the set of 48 red squares (24 for each diagonal). It is
clear that if we draw all these squares, all the lines in the grid will
turn red.

In order to show that 48 is the minimum, consider all grid
segments of length 1 that have exactly one endpoint on the border
of the grid. Every horizontal and every vertical line that cuts the
grid into two parts determines two such segments. So we have
4-24 = 96 segments. It is evident that every red square can contain
at most two of these segments.

05.9. A rectangle is divided into 200 x 3 unit squares. Prove that the
number of ways of splitting this rectangle into rectangles of size 1 x 2 is
divisible by 3.

Solution: Let us denote the number of ways to split some figure
into dominos by a small picture of this figure with a sign #. For

example, #H = 2.
Let N, = ”% (n rows) and v, = #@ (n — 2 full rows and

one row with two cells). We are going to find a recurrence relation
for the numbers N,,.
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% #%Mv%H:@:z#@ﬂ#@
B =

We can generalize our observations by writing the equalities

Ny = 27y + Ny,
2932 = Ny2—Ny_4,
2y = 292 + 2Ny 2.
If we sum up these equalities we obtain the desired recurrence

Ny =4N, 2 — Ny_4.

It is easy to find that N, = 3, Ny = 11. Now by the recurrence
relation it is trivial to check that Ng,, =0 (mod 3).

05.10. Let m = 30030 = 2-3-5-7-11-13 and let M be the set of
its positive divisors which have exactly two prime factors. Determine
the minimal integer n with the following property: for any choice of n
numbers from M, there exist three numbers a, b, c among them satisfying
a-b-c=m.

Answer: n = 11.

Solution: Taking the 10 divisors without the prime 13 shows that
n > 11. Consider the following partition of the 15 divisors into
five groups of three each with the property that the product of the
numbers in every group equals m.

{2-3,5-13,7-11}, {2-5,3-7,11-13}, {2-7,3-13,5-11},
{2-11,3-5,7-13}, {2-13,3-11,5-7}.

If n = 11, there is a group from which we take all three numbers,
that is, their product equals m.
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05.11. Let the points D and E lie on the sides BC and AC, respectively,
of the triangle ABC, satisfying BD = AE. The line joining the circum-
centres of the triangles ADC and BEC meets the lines AC and BC at K
and L, respectively. Prove that KC = LC.

Solution: Assume that the circumcircles of triangles ADC and
BEC meet at C and P. The problem is to show that the line KL
makes equal angles with the lines AC and BC. Since the line join-
ing the circumcentres of triangles ADC and BEC is perpendicular
to the line CP, it suffices to show that CP is the angle-bisector of
ZACB.

Since the points A, P, D, C are concyclic, we obtain ZEAP =

ZBDP. Analogously, we have ZAEP = ZDBP. These two equal-
ities together with AE = BD imply that triangles APE and DPB
are congruent. This means that the distance from P to AC is equal
to the distance from P to BC, and thus CP is the angle-bisector of
ZACB, as desired.
05.12. Let ABCD be a convex quadrilateral such that BC = AD. Let M
and N be the midpoints of AB and CD, respectively. The lines AD and
BC meet the line MN at P and Q, respectively. Prove that CQ = DP.
Solution: Let A, B/, C’, D’ be the feet of the perpendiculars from
A, B, C, D, respectively, onto the line MN. Then

AA' = BB’ and CC' = DD'.

Denote by X, Y the feet of the perpendiculars from C, D onto the
lines BB, AA’, respectively. We infer from the above equalities
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that AY = BX. Since also BC = AD, the right-angled triangles
BXC and AYD are congruent. This shows that

/C'CQ = /B'BQ = LA'AP = /D'DP.

Therefore, since CC' = DD/, the triangles CC'Q and DD’P are
congruent. Thus CQ = DP.

05.13. What is the smallest number of circles of radius /2 that are
needed to cover a rectangle

(@) of size 6 x 32
(b) of size 5 x 37

Answer: (a) Six circles, (b) five circles.
Solution: (a) Consider the four corners and the two midpoints of
the sides of length 6. The distance between any two of these six
points is 3 or more, so one circle cannot cover two of these points,
and at least six circles are needed.

On the other hand one circle will cover a 2 x 2 square, and it is
easy to see that six such squares can cover the rectangle.

(b) Consider the four corners and the centre of the rectangle. The
minimum distance between any two of these points is the distance
between the centre and one of the corners, which is \/34/2. This
is greater than the diameter of the circle (1/34/4 > /32/4), so one




Solutions - 2005 79

circle cannot cover two of these points, and at least five circles are
needed.
Partition the rectangle into three rectangles of 5/3

size 5/3 x 2 and two rectangles of size 5/2 x 1 as
shown on the right. It is easy to check that each has

a diagonal of length less than 2+/2, so five circles can 1 |

cover the five small rectangles and hence the 5 x 3 5/2
rectangle.

05.14. Let the medians of the triangle ABC meet at M. Let D and E
be different points on the line BC such that DC = CE = AB, and let
P and Q be points on the segments BD and BE, respectively, such that
2BP = PD and 2BQ = QE. Determine /PMQ.

Answer: Z/PMQ = 90°.

Solution: Draw the parallelogram ABCA’, with AA’ || BC. Then
M lies on BA’, and BM = %BA’ . So M is on the homothetic image
(centre B, dilation 1/3) of the circle with centre C and radius AB,
which meets BC at D and E. The image meets BC at P and Q. So
ZPMQ = 90°.

B E

05.15. Let the lines e and f be perpendicular and intersect each other at
O. Let A and B lie on e and C and D lie on f, such that all the five points
A, B, C, D and O are distinct. Let the lines b and d pass through B and
D respectively, perpendicularly to AC; let the lines a and c pass through
A and C respectively, perpendicularly to BD. Let a and b intersect at X
and c and d intersect at Y. Prove that XY passes through O.

Solution: Let Ay be the intersection of a with BD, By the inter-
section of b with AC, C; the intersection of ¢ with BD and D;
the intersection of d with AC. It follows easily by the given right
angles that the following three sets each are concyclic:
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e A, A1, D, Dq, O lie on a circle w; with diameter AD.
e B, By, C, Cq, O lie on a circle w, with diameter BC.

e C,Cq1, D, Dq lie on a circle w3 with diameter DC.

We see that O lies on the radical axis of w; and w,. Also, Y lies on
the radical axis of w; and w3, and on the radical axis of w, and wj,
so Y is the radical centre of wy, wy and ws, so it lies on the radical
axis of wy and w,. Analogously we prove that X lies on the radical
axis of wy and w,.

C
X

w3

[£%]

D1
A e

\Q B
w1 7

Aq f a Y

05.16. Let p be a prime number and let n be a positive integer. Let g be a
positive divisor of (n + 1)P — nP. Show that q — 1 is divisible by p.
Solution: It is sufficient to show the statement for g prime. We
need to prove that

(n+1)=n" (modgq) = g=1 (mod p).

It is obvious that ged(n,q) = ged(n+1,q) =1 (as n and n+1
cannot be divisible by g simultaneously). Hence there exists a
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positive integer m such that mn =1 (mod q). In fact, m is just the
multiplicative inverse of n (mod g). Take s = m(n + 1). It is easy
to see that

sP =1 (mod gq).

Let t be the smallest positive integer which satisfies s =1 (mod ¢)
(t is the order of s (mod ¢)). One can easily prove that ¢ divides p.
Indeed, write p = at + b where 0 < b < t. Then

l=s"=s""=(s")"-s" =s* (mod g).

By the definition of ¢, we must have b = 0. Hence t divides p. This
means that t =1 or t = p. However, t = 1 is easily seen to give a
contradiction since then we would have

mn+1)=1 (mod q) or n+l=n (modyg).

Therefore t = p, and p is the order of s (mod g). By Fermat's little
theorem,
s77'=1 (mod q).

Since p is the order of s (mod g), we have that p divides g — 1,
and we are done.

05.17. A sequence (x,), n > 0, is defined as follows: xy = a, x1 = 2
and x, = 2Xy_1Xy—2 — Xp—1 — Xy—2 + 1 for n > 1. Find all integers a
such that 2x3, — 1 is a perfect square for all n > 1.

Answer: a = M where m is an arbitrary positive integer.
Solution: Let v, = 2x,, — 1. Then

Yn = 2(2xn—1xn72 —Xp—1— Xp—2+ 1) -1
=4x, 1Xp—2 —2xy1 —2x42+1
= (2xy-1 — 1)(2xn—2 - 1) = Yn-1Yn-2

when n > 1. Notice that Y43 = Yus2Unt1 = Yo ¥n- We see
that y,,43 is a perfect square if and only if y, is a perfect square.
Hence y3, is a perfect square for all n > 1 exactly when yy is a
perfect square. Since yp = 2a — 1, the result is obtained when

)2 e
= M for all positive integers m.
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05.18. Let x and y be positive integers and assume that z = 4xy/ (x +y)
is an odd integer. Prove that at least one divisor of z can be expressed in
the form 4n — 1 where n is a positive integer.

Solution: Let x = 2°x; and y = 2'y; where x; and y; are odd
integers. Without loss of generality we can assume that s > t. We
have

25+t+2xly1 _ 25+2xly1
2t(25—tx1 —|—y1) - 25—ty +]/1'

If s # t, then the denominator is odd and therefore z is even.
So we have s = t and z = 2"2x3y1/(x1 + y1). Let x; = dxp,
y1 = dy with gcd(x2,v2) = 1. So z = 257 2dxpy / (x2 + y2). As z
is odd, it must be that x; + y» is divisible by 252 > 4 50 x5y + Y2
is divisible by 4. As x, and y» are odd integers, one of them, say
xp is congruent to 3 modulo 4. But ged(x2, x2 +12) =1,s0 xp is a
divisor of z.

Zz =

05.19. Is it possible to find 2005 different positive square numbers such
that their sum is also a square number?
Answer: Yes, it is possible.
Solution: Start with a simple Pythagorian identity such as 3% +
4? = 52, Multiply it by 5
3%.5°+ 4.5 = 5.5
and insert the identity for the first
3%. (3% 4+ 4%) +4>.5° =5%. 5

which gives

3%.3%+3% 4 +4>.5° =55
Multiply again by 52

3%.3%.5°+3%.4*.5° +4°.5*.5° = 5°.5° . 5
and split the first term
32.32. (3% +4%)4+3%.42.52 + 42.52.52 = 52 . 5% . 52
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that is
32.32.32432.32.42 4 3%.4%2.52 41 42.52 .52 = 52 .52 . 52,

This (multiplying by 5% and splitting the first term) can be repeated
as often as needed, each time increasing the number of terms by
one.

Clearly, each term is a square number and the terms are strictly
increasing from left to right.

05.20. Find all positive integers n = pypy - - - px which divide (p1 +
1)(p2+1)--- (px+ 1), where p1ps - - - py is the factorization of n into
prime factors (not necessarily distinct).

Answer: All numbers 2"3° where r and s are non-negative integers
and s < r < 2s.

Solution: Let m = (p1 +1)(p2+1) - - - (px + 1). We may assume
that py is the largest prime factor. If py > 3 then p; cannot divide
m, because if py divides m it is a prime factor of p; + 1 for some
i, but if p; = 2 then p; +1 < pg, and otherwise p; + 1 is an even
number with factors 2 and 3 (p; + 1) which are both strictly smaller
than pi. Thus the only primes that can divide n are 2 and 3, so we
can write n = 2'3%. Then m = 374% = 223" which is divisible by n
if and only if s <r < 2s.

Baltic Way 2006

06.1. For a sequence ay,az,as, . .. of real numbers it is known that
Ay = ay_1+ Ao forn=2,3,4,....

What is the largest number of its consecutive elements that can all be
positive?

Answer: 5.

Solution: The initial segment of the sequence could be 1; 2; 3; 1; 1;
—2; 0. Clearly it is enough to consider only initial segments. For
each sequence the first 6 elements are ay; ay; a3; a, — ay; az — ay;
a, —ay —az. As we see, a1 +as +ag = ay + (a3 — az) + (ap —
ap —az) = 0. So all the elements a;, a5, a¢ can not be positive
simultaneously.
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06.2. Suppose that the real numbers a; € [—2,17],i = 1,2,...,59,
satisfy a1 + ax + - - - + asg = 0. Prove that

a} + a3+ - - + aky < 2006.

Solution: For convenience denote m = —2 and M = 17. Then
m—+ M\?2 M —m\2
- <
(”’ 2 ) = ( 2 ) '

because m < a; < M. So we have

%(ﬂi—m;MY:Za?—i—S% <m+M>2—(m+M)Zai

i=1 2
- (M5,
and thus
;a? <59- <(M;m)2— (’”ZMY) = —59 - m - M = 2006.

06.3. Prove that for every polynomial P(x) with real coefficients there
exist a positive integer m and polynomials Py(x), Po(x),. .., Py(x) with
real coefficients such that

P(x) = (Py(x))° + (Pa(x))° + - - + (Pu())’.

Solution: We will prove by induction on the degree of P(x) that
all polynomials can be represented as a sum of cubes. This is clear
for constant polynomials. Now we proceed to the inductive step.
It is sufficient to show that if P(x) is a polynomial of degree n,
then there exist polynomials Q1 (x), Q2(x), ..., Q(x) such that the
polynomial

P(x) = (Q1(x))° = (Q2(x))° — -+ = (Qr(x))?
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has degree at most n — 1. Assume that the coefficient of x" in P(x)
is equal to c. We consider three cases: If n = 3k, we putr = 1,
Q1(x) = J/exk; if n = 3k + 1 we put r = 3,

Qi(x) =74 %xk(x —-1), Qux)= i/gxk(x—k 1), Q3(x) = —f/gxkﬂ;
and if n = 3k +2 we put r = 2 and

Q) = (D, Q) =g

This completes the induction.

06.4. Let a, b, c, d, e, f be non-negative real numbers satisfying a + b +
c+d+ e+ f = 6. Find the maximal possible value of

abc + bed + cde + def +efa+ fab

and determine all 6-tuples (a,b,c,d, e, f) for which this maximal value
is achieved.

Answer: 8.

Solution: If weseta =b=c=2,d =e = f = 0, then the given
expression is equal to 8. We will show that this is the maximal
value. Applying the inequality between arithmetic and geometric
mean we obtain

s (WAL LEITCIDY S 0 a4 e)(ets)

= (abc + bed + cde + def + efa+ fab) + (ace + bdf),

so we see that abc + bcd + cde + def +efa+ fab < 8 and the
maximal value 8 is achieved when a+d = b+e = c+ f (and
then the common value is 2 because 1 + b+ c+d +e+ f = 6) and
ace = bdf = 0, which can be written as (a,b,c,d, e, f) = (a,b,¢,2 —
a,2—"b,2—c) withac(2—b) = b(2—4a)(2—c) = 0. From this it
follows that (a,b, c) must have one of the forms (0,0, ), (0,t,2),
(t,2,2), (2,2,t), (2,t,0) or (¢,0,0). Therefore the maximum is
achieved for the 6-tuples (a,b,¢,d, e, f) = (0,0,t,2,2,2 — t), where
0 <t <2, and its cyclic permutations.
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06.5. An occasionally unreliable professor has devoted his last book to a
certain binary operation x. When this operation is applied to any two
integers, the result is again an integer. The operation is known to satisfy
the following axioms:

(@ x*(xxy)=yforallx,y € Z;

(b) (xxy)*xy=xforall x,y € Z.

The professor claims in his book that

(C1) the operation * is commutative: x x y = y * x for all x,y € Z.
(C2) the operation * is associative: (xxy)*z = x* (y*z) forall x,y,z €
Z.

Which of these claims follow from the stated axioms?

Answer: (C1) is true; (C2) is false.

Solution: Write (x,y,z) for x xy = z. So the axioms can be
formulated as

(x,y,2) = (x,zY) (06.18)
(xy,z) = (2y,%). (06.19)

(C1) is proved by the sequence (x,,z) @) (z,y,x) @19 (z,x,v)

(06.19)
= (y,x,2).

A counterexample for (C2) is the operation x x y = —(x + y).
06.6. Determine the maximal size of a set of positive integers with the

following properties:

(1) The integers consist of digits from the set {1,2,3,4,5,6}.
(2) No digit occurs more than once in the same integer.

(3) The digits in each integer are in increasing order.
(

4) Any two integers have at least one digit in common (possibly at
different positions).

(5) There is no digit which appears in all the integers.
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Answer: 32.

Solution: Associate with any a; the set M; of its digits. By (1), (2)
and (3) the numbers are uniquely determined by their associated
subsets of {1,2,...,6}. By (4) the sets are intersecting. Partition
the 64 subsets of {1,2,...,6} into 32 pairs of complementary sets
(X,{1,2,...,6} — X). Obviously, at most one of the two sets in
such a pair can be a M;, since the two sets are non-intersecting.
Hence, n < 32. Consider the 22 subsets with at least four elements
and the 10 subsets with three elements containing 1. Hence, n =
32.

06.7. A photographer took some pictures at a party with 10 people. Each
of the 45 possible pairs of people appears together on exactly one photo,
and each photo depicts two or three people. What is the smallest possible
number of photos taken?

Answer: 19.

Solution: Let x be the number of triplet photos (depicting three
people, that is, three pairs) and let y be the number of pair photos
(depicting two people, that is, one pair). Then 3x 4 y = 45.

Each person appears with nine other people, and since 9 is
odd, each person appears on at least one pair photo. Thus y > 5,
so that x < 13. The total number of photos is x +y = 45 — 2x >
45—-2-13 =19.

On the other hand, 19 photos will suffice. We number the
persons 0,1,...,9, and will proceed to specify 13 triplet photos.
We start with making triplets without common pairs of the persons
1-8:

123, 345,567,781

Think of the persons 1-8 as arranged in order around a circle.
Then the persons in each triplet above are separated by at most one
person. Next we make triplets containing 0, avoiding previously
mentioned pairs by combining 0 with two people among the
persons 1-8 separated by two persons:

014, 085,027,036
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Then we make triplets containing 9, again avoiding previously
mentioned pairs by combining 9 with the other four possibilities
of two people among 1-8 being separated by two persons:

916,925,938, 947

Finally, we make our last triplet, again by combining people from
1-8: 246. Here 2 and 4, and 4 and 6, are separated by one person,
but those pairs were not accounted for in the first list, whereas 2
and 6 are separated by three persons, and have not been paired
before. We now have 13 photos of 39 pairs. The remaining 6 pairs
appear on 6 pair photos.

Remark: This problem is equivalent to asking how many complete
3-graphs can be packed (without common edges) into a complete
10-graph.

06.8. The director has found out that six conspiracies have been set up in
his department, each of them involving exactly three persons. Prove that
the director can split the department in two laboratories so that none of
the conspirative groups is entirely in the same laboratory.

Solution: Let the department consist of n persons. Clearly n > 4
(because (g) < 6). If n = 5, take three persons who do not make
a conspiracy and put them in one laboratory, the other two in
another. If n = 6, note that (g) = 20, so we can find a three-person
set such that neither it nor its complement is a conspiracy; this
set will form one laboratory. If n > 7, use induction. We have
(3) > (Z) =21 > 6 -3, so there are two persons A and B who are
not together in any conspiracy. Replace A and B by a new person
AB and use the inductive hypothesis; then replace AB by initial
persons A and B.

06.9. To every vertex of a regular pentagon a real number is assigned. We
may perform the following operation repeatedly: we choose two adjacent
vertices of the pentagon and replace each of the two numbers assigned
to these vertices by their arithmetic mean. Is it always possible to obtain
the position in which all five numbers are zeroes, given that in the initial
position the sum of all five numbers is equal to zero?
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Answer: No.

Solution: We will show that starting from the numbers —%, —%,
—1, —1, 3 we cannot get five zeroes. By adding i to all vertices
we see that our task is equivalent to showing that beginning from
numbers 0, 0, 0, 0, 1 and performing the same operations we can
never get five numbers {. This we prove by noticing that in the
initial position all the numbers are “binary rational” — that is, of
the form %, where k is an integer and m is a non-negative integer
— and an arithmetic mean of two binary rationals is also such a
number, while the number % is not of such form.

06.10. 162 pluses and 144 minuses are placed in a 30 x 30 table in such
a way that each row and each column contains at most 17 signs. (No cell
contains more than one sign.) For every plus we count the number of
minuses in its row and for every minus we count the number of pluses
in its column. Find the maximum of the sum of these numbers.
Answer: 1296 = 72 - 18.

Solution: In the statement of the problem there are two kinds
of numbers: “horizontal” (that has been counted for pluses) and
“vertical” (for minuses). We will show that the sum of numbers of
each type reaches its maximum on the same configuration.

We restrict our attention to the horizontal numbers only. Con-
sider an arbitrary row. Let it contains p pluses and m minuses,
m + p < 17. Then the sum that has been counted for pluses in this
row is equal to mp. Let us redistribute this sum between all signs
in the row. More precisely, let us write the number mp/(m + p) in
every nonempty cell in the row. Now the whole “horizontal” sum
equals to the sum of all 306 written numbers.

Now let us find the maximal possible contribution of each sign
in this sum. That is, we ask about maximum of the expression
f(m,p) = mp/(m+ p) where m + p < 17. Remark that f(m, p)
is an increasing function of m. Therefore if m 4+ p < 17 then
increasing of m will also increase the value of f(m, p). Now if
m+p = 17 then f(m,p) = m(17 —m) /17 and, obviously, it has
maximum 72/17 when m = 8 or m = 9.
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So all the 306 summands in the horizontal sum will be maximal
if we find a configuration in which every non-empty row contains
9 pluses and 8 minuses. The similar statement holds for the vertical
sum. In order to obtain the desired configuration take a square
18 x 18 and draw pluses on 9 generalized diagonals and minuses
on 8 other generalized diagonals (the 18th generalized diagonal
remains empty).

06.11. The altitudes of a triangle are 12, 15 and 20. What is the area of
the triangle?

Answer: 150.

Solution: Denote the sides of the triangle by 4, b and ¢ and its
altitudes by h,, hy and h.. Then we know that h, = 12, b, = 15
and h, = 20 By the well known relation a : b = hy, : h; it
follows b = j2a = {2a = £ a. Analogously, c = f2a = $a = 3a.
Thus half of the triangle’s circumference is s = (a+b+c¢) =
J(a+%a+2a) = &a. For the area A of the triangle we have

A= %aha = %a 12 = 6a, and also by the well known Heron formula

= s(s—a)(s=b)(s—c) = \/ga ta-Z2a-2a = \/5—4114 =

25 a?. Hence, 62 = 25 a%, and we get a = 25 (b = 20, ¢ = 15) and
consequently A = 150.

06.12. Let ABC be a triangle, let By be the midpoint of the side AB
and Cy the midpoint of the side AC. Let P be the point of intersection,
other than A, of the circumscribed circles around the triangles ABC;
and AB1C. Let Py be the point of intersection, other than A, of the line
AP with the circumscribed circle around the triangle AB1Cy. Prove that
2AP =3AP.

Solution: Since /PBB; = ZPBA = 180° — ZPC{A = ZPC;C
and ZPCC; = ZPCA = 180° — ZPB1A = ZPB;B it follows that
APBB; is similar to APC;C. Let By and C; be the midpoints
of BBy and CC; respectively. It follows that Z/BPB, = ZC;PC;
and hence ZB,PC, = ZBPC; = 180° — ZBAC, which implies
that AB,PC; lie on a circle. By similarity it is now clear that
AP/AP; = ABy/ABy = ACy/ACy = 3/2.
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06.13. In a triangle ABC, points D, E lie on sides AB, AC respectively.
The lines BE and CD intersect at F. Prove that if

BC>=BD-BA+CE-CA,

then the points A, D, F, E lie on a circle.

Solution: Let G be a point on the segment BC determined by
the condition BG - BC = BD - BA. (Such a point exists because
BD-BA < BC?) Then the points A, D, G, C lie on a circle.
Moreover, we have

CE-CA=BC*-BD-BA=BC-(BG+CG)—BC-BG=CB-CG,

hence the points A, B, G, E lie on a circle as well. Therefore
ZDAG = ZDCG, ZEAG = ZEBG,

which implies that

ZDAE + ZDFE = ZDAG + ZEAG + 4BFC
= /DCG + ZEBG + ZBFC.

But the sum on the right side is the sum of angles in ABFC. Thus
/DAE + Z/DFE = 180°, and the desired result follows.
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06.14. There are 2006 points marked on the surface of a sphere. Prove
that the surface can be cut into 2006 congruent pieces so that each piece
contains exactly one of these points inside it.

Solution: Choose a North Pole and a South Pole so that no two
points are on the same parallel and no point coincides with either
pole. Draw parallels through each point. Divide each of these
parallels into 2006 equal arcs so that no point is the endpoint of
any arc. In the sequel, “to connect two points” means to draw
the smallest arc of the great circle passing through these points.
Denote the points of division by A;;, where i is the number of
the parallel counting from North to South (i =1,2,...,2006), and
Ai1,Ain, ..., Aiooe are the points of division on the i’th parallel,
where the numbering is chosen such that the marked point on the
i'th parallel lies between A;; and A;; ;.

Consider the lines connecting gradually

N — A1 — A1 — Az1— -+ — Axpe1 — S
N —Aip—Agp — Azp— -+ — Adooe2 — S
N — A12006 — A2,2006 — A32006 — -+ — A2006,2006 — S

These lines divide the surface of the sphere into 2006 parts which
are congruent by rotation; each part contains one of the given
points.

06.15. Let the medians of the triangle ABC intersect at the point M.
A line t through M intersects the circumcircle of ABC at X and Y
so that A and C lie on the same side of t. Prove that BX - BY =
AX-AY +CX - CY.

Solution: Let us start with a lemma: If the diagonals of an in-
scribed quadrilateral ABCD intersect at O, then ﬁlg:gcc = (B)—g.
Indeed,

AB-BC _ 3AB-BC-sinB _ area(ABC) h; _ BO

AD-DC ~ 1AD.DC-sinD  area(ADC) h,  OD
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B
hy
A

Now we have (from the lemma) ’g§ g‘g = ,

so we have to prove RB R+ & SB =1.

Suppose at first that the line RS is not parallel to AC. Let RS
intersect AC at K and the line parallel to AC through B at L. So
4R — ’gf and CS = K we must prove that AK+ CK = BL. But
AK + CK = ZKBl, and BL = % - KBy = 2KBj, completing the

proof.
B L
S
R
K= 5 "¢

If RS || AC, the conclusion is trivial.

06.16. Are there four distinct positive integers such that adding the
product of any two of them to 2006 yields a perfect square?

Answer: No, there are no such integers.

Solution: Suppose there are such integers. Let us consider the
situation modulo 4. Then each square is 0 or 1. But 2006 = 2
(mod 4). So the product of each two supposed numbers must be 2
(mod 4) or 3 (mod 4). From this it follows that there are at least
three odd numbers (because the product of two even numbers is 0
(mod 4)). Two of these odd numbers are congruent modulo 4, so
their product is 1 (mod 4), which is a contradiction.
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06.17. Determine all positive integers n such that 3" 4- 1 is divisible by
n2.

Answer: Only n = 1 satisfies the given condition.

Solution: First observe that if 2 | 3" 4+ 1, then n must be odd,
because if n is even, then 3" is a square of an odd integer, hence
3"+1=1+1=2 (mod 4), so 3" + 1 cannot be divisible by 1>
which is a multiple of 4.

Assume that for some 1 > 1 we have n? | 3" + 1. Let p be the
smallest prime divisor of n. We have shown that p > 2. It is also
clear that p # 3, since 3" 4 1 is never divisible by 3. Therefore
p > 5. We have p | 3" + 1, so also p | 3%" — 1. Let k be the smallest
positive integer such that p | 3¢ — 1. Then we have k | 21, but also
k| p — 1 by Fermat’s theorem. The numbers 3! — 1, 3% — 1 do not
have prime divisors other than 2, so p > 5 implies k > 3. This
means that ged(2n, p—1) > k > 3, and therefore ged(n, p—1) > 1,
which contradicts the fact that p is the smallest prime divisor of n.
This completes the proof.

06.18. For a positive integer n let a, denote the last digit of n\""). Prove
that the sequence (ay) is periodic and determine the length of the minimal
period.

Solution: Let b, and c, denote the last digit of n and n", re-
spectively. Obviously, if b, = 0,1,5,6, then ¢, = 0,1,5,6 and
a, =0,1,5,6, respectively.

If b, =9, then " =1 (mod 2) and consequently a, = 9. If
b, =4, then n" =0 (mod 2) and consequently a, = 6.

If b, = 2,3,7, or 8, then the last digits of n™ run through the
periods: 2—-4-8-6,3-9-7-1,7-9-3—-10or8—-4—-2-6,
respectively. If b, =2 or b, = 8, then n" =0 (mod 4) and a, = 6.

In the remaining cases b, =3 or b, =7, if n = £1 (mod 4),
then so is n".

If b, = 3,thenn =3 (mod 20) or n = 13 (mod 20) and n" =7
(mod 20) or n" = 13 (mod 20), so a, =7 or a, = 3, respectively.

Ifb, =7,thenn =7 (mod 20) or n = 17 (mod 20) and n" =
(mod 20) or n" =17 (mod 20), so a, = 3 or a, = 7, respectively.
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Finally, we conclude that the sequence (a,) has the following
period of length 20:

1-6-7-6-5-6—-3-6—-9-0
-1-6-3-6-5-6-7-6—-9-0

06.19. Does there exist a sequence ay,az, as, . . . of positive integers such
that the sum of every n consecutive elements is divisible by n® for every
positive integer n?
Answer: Yes. One such sequence begins 1, 3, 5, 55, 561, 851, 63253,
110055, . ..
Solution: We will show that whenever we have positive integers
ai,...,a; such that n? | aj.q1 + -+ +a;,, for every n < k and
i <k —n, then it is possible to choose 4y such that n? | ajq +
<o+ +a;, forevery n < k+1and i < k41— n. This directly
implies the positive answer to the problem because we can start
constructing the sequence from any single positive integer.

To obtain the necessary property, it is sufficient for ax,; to
satisfy

ki1 = —(Ag_ps2 + - +ar) (mod n?)

for every n < k + 1. This is a system of k + 1 congruences.

Note first that, for any prime p and positive integer I such that
p! <k + 1, if the congruence with module p? is satisfied then also
the congruence with module p?(~1 is satisfied. To see this, group
the last p' elements of a1, . .., a1 into p groups of p'~! consecutive
elements. By choice of a3, ..., a, the sums computed for the first
p — 1 groups are all divisible by p2(/~1). By assumption, the sum
of the elements in all p groups is divisible by p?. Hence the sum
of the remaining pl_l elements, that is Ap_pi-14p T+ o+ Akq1, is
divisible by p(~1).

Secondly, note that, for any relatively prime positive inte-
gers ¢, d such that cd < k41, if the congruences both with
module ¢? and module d? hold then also the congruence with
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module (cd)? holds. To see this, group the last cd elements of
ai,...,ax4+1 into d groups of ¢ consecutive elements, as well as into
c groups of d consecutive elements. Using the choice of a3, ..., 4,
and the assumption together, we get that the sum of the last cd
elements of ay, ..., a,; is divisible by both ¢ and d?. Hence this
sum is divisible by (cd)?.

The two observations let us reject all congruences except for
the ones with module being the square of a prime power p' such
that p'*! > k + 1. The resulting system has pairwise relatively
prime modules and hence possesses a solution by the Chinese
Remainder Theorem.

06.20. A 12-digit positive integer consisting only of digits 1, 5 and 9 is
divisible by 37. Prove that the sum of its digits is not equal to 76.
Solution: Let N be the initial number. Assume that its digit sum
is equal to 76.

The key observation is that 3 -37 = 111, and therefore 27 -
37 = 999. Thus we have a divisibility test similar to the one for
divisibility by 9: for x = 2,10%" +a,,_1103""V + ... 4 3710 + ao,
we have x =a, +a,_1+---+ap (mod 37). In other words, if we
take the digits of x in groups of three and sum these groups, we
obtain a number congruent to x modulo 37.

The observation also implies that A = 111111111111 is divis-
ible by 37. Therefore the number N — A is divisible by 37, and
since it consists of the digits 0, 4 and 8, it is divisible by 4. The
sum of the digits of N — A equals 76 — 12 = 64. Therefore the
number %(N — A) contains only the digits 0, 1, 2; it is divisible
by 37; and its digits sum up to 16. Applying our divisibility test
to this number, we sum four three-digit groups consisting of the
digits 0, 1, 2 only. No digits will be carried, and each digit of the
sum S is at most 8. Also S is divisible by 37, and its digits sum
up to 16. Since S = 16 = 1 (mod 3) and 37 = 1 (mod 3), we
have S/37 = 1 (mod 3). Therefore S = 37(3k + 1), that is, S is
one of 037, 148, 259, 370, 481, 592, 703, 814, 925; but each of these
either contains the digit 9 or does not have a digit sum of 16.
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In the the tables below, the following abbreviations have been

used.

Pol Poland

StP

Germany
Iceland
Latvia

Belgium  Ger

Belarus

Bel

St. Petersburg
Sweden

Ice

Blr

Swe

Den Denmark Lat

Est

Lit Lithuania

Estonia

Norway

Finland Nor

Fin

Belgium and Belarus participated in 2005 and 2004, respectively.
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