តារាងនៃស៊េរីគណិតវិទ្យា


  • Carl von Linné, Alexander Roslin, 1775. Oil pa...
    Carl von Linné, Alexander Roslin, 1775. Oil painting in the portrait collection at Gripsholm Castle. (Photo credit: Wikipedia)

    **ភាគបែងធម្មតា

  • \sum^{\infty}_{i=1} \frac{x^i}i = \log_e\left(\frac{1}{1-x}\right) \! ចំពោះ |x|\le 1, \, x\not= -1
  • \sum^{\infty}_{i=0} \frac{(-1)^i}{2i+1} x^{2i+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots = \arctan(x)
  • \sum^{\infty}_{i=0} \frac{x^{2i+1}}{2i+1} = \mathrm{arctanh} (x) \!ចំពោះ |x| < 1\!
  • \sum^{\infin}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1} = \arcsin x\! ចំពោះ |x| < 1\!
  • \sum^{\infty}_{i=0} \frac{(-1)^i (2i)!}{4^i (i!)^2 (2i+1)} x^{2i+1} = \mathrm{arsinh}(x)\! ចំពោះ  |x| < 1\!

ស៊េរីទ្វេធា(Binomial series)[កែប្រែ]

ស៊េរីទ្វេធា (រួមទាំងរឹសការេនៃ \alpha = 1/2 ហើយស៊េរីធរណីមាត្រអនន្តចំពោះ \alpha = -1):

រឹសការេ:

  • \sqrt{1+x} = \sum_{n=0}^\infty \frac{(-1)^n(2n)!}{(1-2n)n!^24^n}x^n \! ចំពោះ |x|<1\!

ស៊េរីធរណីមាត្រ:

  • (1+x)^{-1} = \sum_{n=0}^\infty (-1)^n x^n \! ចំពោះ |x|<1

ទំរង់ទូទៅ:

ដោយសំរួលមេគុណទ្វេធា
{\alpha\choose n} = \prod_{k=1}^n \frac{\alpha-k+1}k = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}\!
  • \sum_{i=0}^n {n \choose i} = 2^n
  • \sum_{i=0}^n {n \choose i}a^{(n-i)} b^i = (a + b)^n
  • \sum_{i=0}^n {i \choose k} = { n+1 \choose k+1 }
  • \sum_{i=0}^n {k+i \choose i} = { k + n + 1 \choose n }
  • \sum_{i=0}^r {r \choose i}{s \choose n-i} = {r + s \choose n}

ផលបូក នៃ ស៊ីនុស និងកូស៊ីនុស មានក្នុងស៊េរីហ្វូរៀរ(Fourier series)​ ។

  • \sum_{i=1}^n \sin\left(\frac{i\pi}{n}\right) = 0
  • \sum_{i=1}^n \cos\left(\frac{i\pi}{n}\right) = 0
  • **មិនមានចំណាត់ថ្នាក់

\sum_{n=b+1}^{\infty} \frac{b}{n^2 - b^2} = \sum_{n=1}^{2b} \frac{1}{2n}

  • **ផលបូកនៃស្វ័យគុណ

  • \sum_{i=1}^n i = \frac{n(n+1)}{2}
  • \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6} = \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}
  • \sum_{i=1}^n i^3 = \left(\frac{n(n+1)}{2}\right)^2 = \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4} = \left[\sum_{i=1}^n i\right]^2
  • \sum_{i=1}^{n} i^{4} = \frac{n(n+1)(2n+1)(3n^{2}+3n-1)}{30}
  • \sum_{i=0}^n i^s = \frac{(n+1)^{s+1}}{s+1} + \sum_{k=1}^s\frac{B_k}{s-k+1}{s\choose k}(n+1)^{s-k+1}
ដែល B_k ជាចំនួនប៊ែរនូយី(Bernoulli number)ទីk
  • \sum_{i=1}^\infty i^{-s} = \prod_{p \text{ prime}} \frac{1}{1-p^{-s}} = \zeta(s)
ដែល \zeta(s)ជាអនុគមន៍ហ្សេតារីម៉ាន(Reimann zeta function) ។
  • **ស៊េរីស្វ័យគុណ

ផលបូកអនន្ត (ចំពោះ |x|\le 1, x\neq 1) ផលបូកមិនអនន្ត
\sum_{i=0}^\infty x^i = \frac{1}{1-x} \sum_{i=0}^n x^i = \frac{1-x^{n+1}}{1-x}
\sum_{i=1}^\infty i x^i = \frac{x}{(1-x)^2} \sum_{i=1}^n i x^i = x\frac{1-x^n}{(1-x)^2} - \frac{n x^{n+1}}{1-x}
\sum_{i=1}^{\infty} i^2 x^i =\frac{x(1+x)}{(1-x)^3} \sum_{i=1}^n i^2 x^i = \frac{x(1+x-(n+1)^2x^n+(2n^2+2n-1)x^{n+1}-n^2x^{n+2})}{(1-x)^3}
\sum_{i=1}^{\infty} i^3 x^i =\frac{x(1+4x+x^2)}{(1-x)^4}
\sum_{i=1}^{\infty} i^4 x^i =\frac{x(1+x)(1+10x+x^2)}{(1-x)^5}
\sum_{i=1}^{\infty} i^k x^i = x \frac{d}{dx}\left(\sum_{i=1}^{\infty} i^{\left(k-1\right)} x^i\right) = Li_{-k}(x) ដែល Li_{s}(x) ជាពហុលោការីត(Polylogarithm)នៃ x

ឆ្លើយ​តប

Fill in your details below or click an icon to log in:

ឡូហ្កូ WordPress.com

អ្នក​កំពុង​បញ្ចេញ​មតិ​ដោយ​ប្រើ​គណនី WordPress.com របស់​អ្នក​។ Log Out / ផ្លាស់ប្តូរ )

រូប Twitter

អ្នក​កំពុង​បញ្ចេញ​មតិ​ដោយ​ប្រើ​គណនី Twitter របស់​អ្នក​។ Log Out / ផ្លាស់ប្តូរ )

រូបថត Facebook

អ្នក​កំពុង​បញ្ចេញ​មតិ​ដោយ​ប្រើ​គណនី Facebook របស់​អ្នក​។ Log Out / ផ្លាស់ប្តូរ )

Google+ photo

អ្នក​កំពុង​បញ្ចេញ​មតិ​ដោយ​ប្រើ​គណនី Google+ របស់​អ្នក​។ Log Out / ផ្លាស់ប្តូរ )

កំពុង​ភ្ជាប់​ទៅ​កាន់ %s